This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any neighborhood of a set S is also a neighborhood of any subset R C_ S . Similar to Proposition 1 of BourbakiTop1 p. I.2. (Contributed by FL, 25-Sep-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | neiss | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∧ 𝑅 ⊆ 𝑆 ) → 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | 1 | neii1 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) → 𝑁 ⊆ ∪ 𝐽 ) |
| 3 | 2 | 3adant3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∧ 𝑅 ⊆ 𝑆 ) → 𝑁 ⊆ ∪ 𝐽 ) |
| 4 | neii2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) → ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁 ) ) | |
| 5 | 4 | 3adant3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∧ 𝑅 ⊆ 𝑆 ) → ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁 ) ) |
| 6 | sstr2 | ⊢ ( 𝑅 ⊆ 𝑆 → ( 𝑆 ⊆ 𝑔 → 𝑅 ⊆ 𝑔 ) ) | |
| 7 | 6 | anim1d | ⊢ ( 𝑅 ⊆ 𝑆 → ( ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁 ) → ( 𝑅 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁 ) ) ) |
| 8 | 7 | reximdv | ⊢ ( 𝑅 ⊆ 𝑆 → ( ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁 ) → ∃ 𝑔 ∈ 𝐽 ( 𝑅 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁 ) ) ) |
| 9 | 8 | 3ad2ant3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∧ 𝑅 ⊆ 𝑆 ) → ( ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁 ) → ∃ 𝑔 ∈ 𝐽 ( 𝑅 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁 ) ) ) |
| 10 | 5 9 | mpd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∧ 𝑅 ⊆ 𝑆 ) → ∃ 𝑔 ∈ 𝐽 ( 𝑅 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁 ) ) |
| 11 | simp1 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∧ 𝑅 ⊆ 𝑆 ) → 𝐽 ∈ Top ) | |
| 12 | simp3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∧ 𝑅 ⊆ 𝑆 ) → 𝑅 ⊆ 𝑆 ) | |
| 13 | 1 | neiss2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) → 𝑆 ⊆ ∪ 𝐽 ) |
| 14 | 13 | 3adant3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∧ 𝑅 ⊆ 𝑆 ) → 𝑆 ⊆ ∪ 𝐽 ) |
| 15 | 12 14 | sstrd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∧ 𝑅 ⊆ 𝑆 ) → 𝑅 ⊆ ∪ 𝐽 ) |
| 16 | 1 | isnei | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑅 ⊆ ∪ 𝐽 ) → ( 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑅 ) ↔ ( 𝑁 ⊆ ∪ 𝐽 ∧ ∃ 𝑔 ∈ 𝐽 ( 𝑅 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁 ) ) ) ) |
| 17 | 11 15 16 | syl2anc | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∧ 𝑅 ⊆ 𝑆 ) → ( 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑅 ) ↔ ( 𝑁 ⊆ ∪ 𝐽 ∧ ∃ 𝑔 ∈ 𝐽 ( 𝑅 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁 ) ) ) ) |
| 18 | 3 10 17 | mpbir2and | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∧ 𝑅 ⊆ 𝑆 ) → 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑅 ) ) |