This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For any neighborhood N of S , there is a neighborhood x of S such that N is a neighborhood of all subsets of x . Generalization to subsets of Property V_iv of BourbakiTop1 p. I.3. (Contributed by FL, 2-Oct-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | neissex | |- ( ( J e. Top /\ N e. ( ( nei ` J ) ` S ) ) -> E. x e. ( ( nei ` J ) ` S ) A. y ( y C_ x -> N e. ( ( nei ` J ) ` y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neii2 | |- ( ( J e. Top /\ N e. ( ( nei ` J ) ` S ) ) -> E. x e. J ( S C_ x /\ x C_ N ) ) |
|
| 2 | opnneiss | |- ( ( J e. Top /\ x e. J /\ S C_ x ) -> x e. ( ( nei ` J ) ` S ) ) |
|
| 3 | 2 | 3expb | |- ( ( J e. Top /\ ( x e. J /\ S C_ x ) ) -> x e. ( ( nei ` J ) ` S ) ) |
| 4 | 3 | adantrrr | |- ( ( J e. Top /\ ( x e. J /\ ( S C_ x /\ x C_ N ) ) ) -> x e. ( ( nei ` J ) ` S ) ) |
| 5 | 4 | adantlr | |- ( ( ( J e. Top /\ N e. ( ( nei ` J ) ` S ) ) /\ ( x e. J /\ ( S C_ x /\ x C_ N ) ) ) -> x e. ( ( nei ` J ) ` S ) ) |
| 6 | simplll | |- ( ( ( ( J e. Top /\ N e. ( ( nei ` J ) ` S ) ) /\ ( x e. J /\ x C_ N ) ) /\ y C_ x ) -> J e. Top ) |
|
| 7 | simpll | |- ( ( ( J e. Top /\ N e. ( ( nei ` J ) ` S ) ) /\ x e. J ) -> J e. Top ) |
|
| 8 | simpr | |- ( ( ( J e. Top /\ N e. ( ( nei ` J ) ` S ) ) /\ x e. J ) -> x e. J ) |
|
| 9 | eqid | |- U. J = U. J |
|
| 10 | 9 | neii1 | |- ( ( J e. Top /\ N e. ( ( nei ` J ) ` S ) ) -> N C_ U. J ) |
| 11 | 10 | adantr | |- ( ( ( J e. Top /\ N e. ( ( nei ` J ) ` S ) ) /\ x e. J ) -> N C_ U. J ) |
| 12 | 9 | opnssneib | |- ( ( J e. Top /\ x e. J /\ N C_ U. J ) -> ( x C_ N <-> N e. ( ( nei ` J ) ` x ) ) ) |
| 13 | 7 8 11 12 | syl3anc | |- ( ( ( J e. Top /\ N e. ( ( nei ` J ) ` S ) ) /\ x e. J ) -> ( x C_ N <-> N e. ( ( nei ` J ) ` x ) ) ) |
| 14 | 13 | biimpa | |- ( ( ( ( J e. Top /\ N e. ( ( nei ` J ) ` S ) ) /\ x e. J ) /\ x C_ N ) -> N e. ( ( nei ` J ) ` x ) ) |
| 15 | 14 | anasss | |- ( ( ( J e. Top /\ N e. ( ( nei ` J ) ` S ) ) /\ ( x e. J /\ x C_ N ) ) -> N e. ( ( nei ` J ) ` x ) ) |
| 16 | 15 | adantr | |- ( ( ( ( J e. Top /\ N e. ( ( nei ` J ) ` S ) ) /\ ( x e. J /\ x C_ N ) ) /\ y C_ x ) -> N e. ( ( nei ` J ) ` x ) ) |
| 17 | simpr | |- ( ( ( ( J e. Top /\ N e. ( ( nei ` J ) ` S ) ) /\ ( x e. J /\ x C_ N ) ) /\ y C_ x ) -> y C_ x ) |
|
| 18 | neiss | |- ( ( J e. Top /\ N e. ( ( nei ` J ) ` x ) /\ y C_ x ) -> N e. ( ( nei ` J ) ` y ) ) |
|
| 19 | 6 16 17 18 | syl3anc | |- ( ( ( ( J e. Top /\ N e. ( ( nei ` J ) ` S ) ) /\ ( x e. J /\ x C_ N ) ) /\ y C_ x ) -> N e. ( ( nei ` J ) ` y ) ) |
| 20 | 19 | ex | |- ( ( ( J e. Top /\ N e. ( ( nei ` J ) ` S ) ) /\ ( x e. J /\ x C_ N ) ) -> ( y C_ x -> N e. ( ( nei ` J ) ` y ) ) ) |
| 21 | 20 | adantrrl | |- ( ( ( J e. Top /\ N e. ( ( nei ` J ) ` S ) ) /\ ( x e. J /\ ( S C_ x /\ x C_ N ) ) ) -> ( y C_ x -> N e. ( ( nei ` J ) ` y ) ) ) |
| 22 | 21 | alrimiv | |- ( ( ( J e. Top /\ N e. ( ( nei ` J ) ` S ) ) /\ ( x e. J /\ ( S C_ x /\ x C_ N ) ) ) -> A. y ( y C_ x -> N e. ( ( nei ` J ) ` y ) ) ) |
| 23 | 1 5 22 | reximssdv | |- ( ( J e. Top /\ N e. ( ( nei ` J ) ` S ) ) -> E. x e. ( ( nei ` J ) ` S ) A. y ( y C_ x -> N e. ( ( nei ` J ) ` y ) ) ) |