This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The infimum of a set of reals A . (Contributed by NM, 9-Oct-2005) (Revised by AV, 4-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfinfre | ⊢ ( 𝐴 ⊆ ℝ → inf ( 𝐴 , ℝ , < ) = ∪ { 𝑥 ∈ ℝ ∣ ( ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-inf | ⊢ inf ( 𝐴 , ℝ , < ) = sup ( 𝐴 , ℝ , ◡ < ) | |
| 2 | df-sup | ⊢ sup ( 𝐴 , ℝ , ◡ < ) = ∪ { 𝑥 ∈ ℝ ∣ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ◡ < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 ◡ < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 ◡ < 𝑧 ) ) } | |
| 3 | ssel2 | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ ℝ ) | |
| 4 | vex | ⊢ 𝑥 ∈ V | |
| 5 | vex | ⊢ 𝑦 ∈ V | |
| 6 | 4 5 | brcnv | ⊢ ( 𝑥 ◡ < 𝑦 ↔ 𝑦 < 𝑥 ) |
| 7 | 6 | notbii | ⊢ ( ¬ 𝑥 ◡ < 𝑦 ↔ ¬ 𝑦 < 𝑥 ) |
| 8 | lenlt | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 ≤ 𝑦 ↔ ¬ 𝑦 < 𝑥 ) ) | |
| 9 | 7 8 | bitr4id | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ¬ 𝑥 ◡ < 𝑦 ↔ 𝑥 ≤ 𝑦 ) ) |
| 10 | 3 9 | sylan2 | ⊢ ( ( 𝑥 ∈ ℝ ∧ ( 𝐴 ⊆ ℝ ∧ 𝑦 ∈ 𝐴 ) ) → ( ¬ 𝑥 ◡ < 𝑦 ↔ 𝑥 ≤ 𝑦 ) ) |
| 11 | 10 | ancoms | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑥 ∈ ℝ ) → ( ¬ 𝑥 ◡ < 𝑦 ↔ 𝑥 ≤ 𝑦 ) ) |
| 12 | 11 | an32s | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → ( ¬ 𝑥 ◡ < 𝑦 ↔ 𝑥 ≤ 𝑦 ) ) |
| 13 | 12 | ralbidva | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ ) → ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ◡ < 𝑦 ↔ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) |
| 14 | 5 4 | brcnv | ⊢ ( 𝑦 ◡ < 𝑥 ↔ 𝑥 < 𝑦 ) |
| 15 | vex | ⊢ 𝑧 ∈ V | |
| 16 | 5 15 | brcnv | ⊢ ( 𝑦 ◡ < 𝑧 ↔ 𝑧 < 𝑦 ) |
| 17 | 16 | rexbii | ⊢ ( ∃ 𝑧 ∈ 𝐴 𝑦 ◡ < 𝑧 ↔ ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) |
| 18 | 14 17 | imbi12i | ⊢ ( ( 𝑦 ◡ < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 ◡ < 𝑧 ) ↔ ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) |
| 19 | 18 | ralbii | ⊢ ( ∀ 𝑦 ∈ ℝ ( 𝑦 ◡ < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 ◡ < 𝑧 ) ↔ ∀ 𝑦 ∈ ℝ ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) |
| 20 | 19 | a1i | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ ) → ( ∀ 𝑦 ∈ ℝ ( 𝑦 ◡ < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 ◡ < 𝑧 ) ↔ ∀ 𝑦 ∈ ℝ ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) |
| 21 | 13 20 | anbi12d | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ◡ < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 ◡ < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 ◡ < 𝑧 ) ) ↔ ( ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) ) |
| 22 | 21 | rabbidva | ⊢ ( 𝐴 ⊆ ℝ → { 𝑥 ∈ ℝ ∣ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ◡ < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 ◡ < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 ◡ < 𝑧 ) ) } = { 𝑥 ∈ ℝ ∣ ( ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) } ) |
| 23 | 22 | unieqd | ⊢ ( 𝐴 ⊆ ℝ → ∪ { 𝑥 ∈ ℝ ∣ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ◡ < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 ◡ < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 ◡ < 𝑧 ) ) } = ∪ { 𝑥 ∈ ℝ ∣ ( ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) } ) |
| 24 | 2 23 | eqtrid | ⊢ ( 𝐴 ⊆ ℝ → sup ( 𝐴 , ℝ , ◡ < ) = ∪ { 𝑥 ∈ ℝ ∣ ( ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) } ) |
| 25 | 1 24 | eqtrid | ⊢ ( 𝐴 ⊆ ℝ → inf ( 𝐴 , ℝ , < ) = ∪ { 𝑥 ∈ ℝ ∣ ( ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) } ) |