This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Negation is an isomorphism of a subset of the real numbers to the negated elements of the subset. (Contributed by AV, 9-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | negf1o.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ - 𝑥 ) | |
| Assertion | negf1o | ⊢ ( 𝐴 ⊆ ℝ → 𝐹 : 𝐴 –1-1-onto→ { 𝑛 ∈ ℝ ∣ - 𝑛 ∈ 𝐴 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negf1o.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ - 𝑥 ) | |
| 2 | negeq | ⊢ ( 𝑛 = - 𝑥 → - 𝑛 = - - 𝑥 ) | |
| 3 | 2 | eleq1d | ⊢ ( 𝑛 = - 𝑥 → ( - 𝑛 ∈ 𝐴 ↔ - - 𝑥 ∈ 𝐴 ) ) |
| 4 | ssel | ⊢ ( 𝐴 ⊆ ℝ → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ℝ ) ) | |
| 5 | renegcl | ⊢ ( 𝑥 ∈ ℝ → - 𝑥 ∈ ℝ ) | |
| 6 | 4 5 | syl6 | ⊢ ( 𝐴 ⊆ ℝ → ( 𝑥 ∈ 𝐴 → - 𝑥 ∈ ℝ ) ) |
| 7 | 6 | imp | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴 ) → - 𝑥 ∈ ℝ ) |
| 8 | 4 | imp | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℝ ) |
| 9 | recn | ⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℂ ) | |
| 10 | negneg | ⊢ ( 𝑥 ∈ ℂ → - - 𝑥 = 𝑥 ) | |
| 11 | 10 | eqcomd | ⊢ ( 𝑥 ∈ ℂ → 𝑥 = - - 𝑥 ) |
| 12 | 9 11 | syl | ⊢ ( 𝑥 ∈ ℝ → 𝑥 = - - 𝑥 ) |
| 13 | 12 | eleq1d | ⊢ ( 𝑥 ∈ ℝ → ( 𝑥 ∈ 𝐴 ↔ - - 𝑥 ∈ 𝐴 ) ) |
| 14 | 13 | biimpcd | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ ℝ → - - 𝑥 ∈ 𝐴 ) ) |
| 15 | 14 | adantl | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ ℝ → - - 𝑥 ∈ 𝐴 ) ) |
| 16 | 8 15 | mpd | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴 ) → - - 𝑥 ∈ 𝐴 ) |
| 17 | 3 7 16 | elrabd | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴 ) → - 𝑥 ∈ { 𝑛 ∈ ℝ ∣ - 𝑛 ∈ 𝐴 } ) |
| 18 | negeq | ⊢ ( 𝑛 = 𝑦 → - 𝑛 = - 𝑦 ) | |
| 19 | 18 | eleq1d | ⊢ ( 𝑛 = 𝑦 → ( - 𝑛 ∈ 𝐴 ↔ - 𝑦 ∈ 𝐴 ) ) |
| 20 | 19 | elrab | ⊢ ( 𝑦 ∈ { 𝑛 ∈ ℝ ∣ - 𝑛 ∈ 𝐴 } ↔ ( 𝑦 ∈ ℝ ∧ - 𝑦 ∈ 𝐴 ) ) |
| 21 | simpr | ⊢ ( ( 𝑦 ∈ ℝ ∧ - 𝑦 ∈ 𝐴 ) → - 𝑦 ∈ 𝐴 ) | |
| 22 | 21 | a1i | ⊢ ( 𝐴 ⊆ ℝ → ( ( 𝑦 ∈ ℝ ∧ - 𝑦 ∈ 𝐴 ) → - 𝑦 ∈ 𝐴 ) ) |
| 23 | 20 22 | biimtrid | ⊢ ( 𝐴 ⊆ ℝ → ( 𝑦 ∈ { 𝑛 ∈ ℝ ∣ - 𝑛 ∈ 𝐴 } → - 𝑦 ∈ 𝐴 ) ) |
| 24 | 23 | imp | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑦 ∈ { 𝑛 ∈ ℝ ∣ - 𝑛 ∈ 𝐴 } ) → - 𝑦 ∈ 𝐴 ) |
| 25 | 4 9 | syl6com | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝐴 ⊆ ℝ → 𝑥 ∈ ℂ ) ) |
| 26 | 25 | adantl | ⊢ ( ( ( 𝑦 ∈ ℝ ∧ - 𝑦 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐴 ⊆ ℝ → 𝑥 ∈ ℂ ) ) |
| 27 | 26 | imp | ⊢ ( ( ( ( 𝑦 ∈ ℝ ∧ - 𝑦 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐴 ⊆ ℝ ) → 𝑥 ∈ ℂ ) |
| 28 | recn | ⊢ ( 𝑦 ∈ ℝ → 𝑦 ∈ ℂ ) | |
| 29 | 28 | ad3antrrr | ⊢ ( ( ( ( 𝑦 ∈ ℝ ∧ - 𝑦 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐴 ⊆ ℝ ) → 𝑦 ∈ ℂ ) |
| 30 | negcon2 | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 = - 𝑦 ↔ 𝑦 = - 𝑥 ) ) | |
| 31 | 27 29 30 | syl2anc | ⊢ ( ( ( ( 𝑦 ∈ ℝ ∧ - 𝑦 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐴 ⊆ ℝ ) → ( 𝑥 = - 𝑦 ↔ 𝑦 = - 𝑥 ) ) |
| 32 | 31 | exp31 | ⊢ ( ( 𝑦 ∈ ℝ ∧ - 𝑦 ∈ 𝐴 ) → ( 𝑥 ∈ 𝐴 → ( 𝐴 ⊆ ℝ → ( 𝑥 = - 𝑦 ↔ 𝑦 = - 𝑥 ) ) ) ) |
| 33 | 20 32 | sylbi | ⊢ ( 𝑦 ∈ { 𝑛 ∈ ℝ ∣ - 𝑛 ∈ 𝐴 } → ( 𝑥 ∈ 𝐴 → ( 𝐴 ⊆ ℝ → ( 𝑥 = - 𝑦 ↔ 𝑦 = - 𝑥 ) ) ) ) |
| 34 | 33 | impcom | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ { 𝑛 ∈ ℝ ∣ - 𝑛 ∈ 𝐴 } ) → ( 𝐴 ⊆ ℝ → ( 𝑥 = - 𝑦 ↔ 𝑦 = - 𝑥 ) ) ) |
| 35 | 34 | impcom | ⊢ ( ( 𝐴 ⊆ ℝ ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ { 𝑛 ∈ ℝ ∣ - 𝑛 ∈ 𝐴 } ) ) → ( 𝑥 = - 𝑦 ↔ 𝑦 = - 𝑥 ) ) |
| 36 | 1 17 24 35 | f1o2d | ⊢ ( 𝐴 ⊆ ℝ → 𝐹 : 𝐴 –1-1-onto→ { 𝑛 ∈ ℝ ∣ - 𝑛 ∈ 𝐴 } ) |