This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a set of reals contains a lower bound, it contains a unique lower bound. (Contributed by NM, 9-Oct-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lbreu | ⊢ ( ( 𝑆 ⊆ ℝ ∧ ∃ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) → ∃! 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 | ⊢ ( 𝑦 = 𝑤 → ( 𝑥 ≤ 𝑦 ↔ 𝑥 ≤ 𝑤 ) ) | |
| 2 | 1 | rspcv | ⊢ ( 𝑤 ∈ 𝑆 → ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ 𝑤 ) ) |
| 3 | breq2 | ⊢ ( 𝑦 = 𝑥 → ( 𝑤 ≤ 𝑦 ↔ 𝑤 ≤ 𝑥 ) ) | |
| 4 | 3 | rspcv | ⊢ ( 𝑥 ∈ 𝑆 → ( ∀ 𝑦 ∈ 𝑆 𝑤 ≤ 𝑦 → 𝑤 ≤ 𝑥 ) ) |
| 5 | 2 4 | im2anan9r | ⊢ ( ( 𝑥 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) → ( ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑦 ∈ 𝑆 𝑤 ≤ 𝑦 ) → ( 𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑥 ) ) ) |
| 6 | ssel | ⊢ ( 𝑆 ⊆ ℝ → ( 𝑥 ∈ 𝑆 → 𝑥 ∈ ℝ ) ) | |
| 7 | ssel | ⊢ ( 𝑆 ⊆ ℝ → ( 𝑤 ∈ 𝑆 → 𝑤 ∈ ℝ ) ) | |
| 8 | 6 7 | anim12d | ⊢ ( 𝑆 ⊆ ℝ → ( ( 𝑥 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) → ( 𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ ) ) ) |
| 9 | 8 | impcom | ⊢ ( ( ( 𝑥 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ∧ 𝑆 ⊆ ℝ ) → ( 𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ ) ) |
| 10 | letri3 | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ ) → ( 𝑥 = 𝑤 ↔ ( 𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑥 ) ) ) | |
| 11 | 9 10 | syl | ⊢ ( ( ( 𝑥 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ∧ 𝑆 ⊆ ℝ ) → ( 𝑥 = 𝑤 ↔ ( 𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑥 ) ) ) |
| 12 | 11 | exbiri | ⊢ ( ( 𝑥 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) → ( 𝑆 ⊆ ℝ → ( ( 𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑥 ) → 𝑥 = 𝑤 ) ) ) |
| 13 | 12 | com23 | ⊢ ( ( 𝑥 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) → ( ( 𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑥 ) → ( 𝑆 ⊆ ℝ → 𝑥 = 𝑤 ) ) ) |
| 14 | 5 13 | syld | ⊢ ( ( 𝑥 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) → ( ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑦 ∈ 𝑆 𝑤 ≤ 𝑦 ) → ( 𝑆 ⊆ ℝ → 𝑥 = 𝑤 ) ) ) |
| 15 | 14 | com3r | ⊢ ( 𝑆 ⊆ ℝ → ( ( 𝑥 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) → ( ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑦 ∈ 𝑆 𝑤 ≤ 𝑦 ) → 𝑥 = 𝑤 ) ) ) |
| 16 | 15 | ralrimivv | ⊢ ( 𝑆 ⊆ ℝ → ∀ 𝑥 ∈ 𝑆 ∀ 𝑤 ∈ 𝑆 ( ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑦 ∈ 𝑆 𝑤 ≤ 𝑦 ) → 𝑥 = 𝑤 ) ) |
| 17 | 16 | anim1ci | ⊢ ( ( 𝑆 ⊆ ℝ ∧ ∃ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) → ( ∃ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑤 ∈ 𝑆 ( ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑦 ∈ 𝑆 𝑤 ≤ 𝑦 ) → 𝑥 = 𝑤 ) ) ) |
| 18 | breq1 | ⊢ ( 𝑥 = 𝑤 → ( 𝑥 ≤ 𝑦 ↔ 𝑤 ≤ 𝑦 ) ) | |
| 19 | 18 | ralbidv | ⊢ ( 𝑥 = 𝑤 → ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ↔ ∀ 𝑦 ∈ 𝑆 𝑤 ≤ 𝑦 ) ) |
| 20 | 19 | reu4 | ⊢ ( ∃! 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ↔ ( ∃ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑤 ∈ 𝑆 ( ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑦 ∈ 𝑆 𝑤 ≤ 𝑦 ) → 𝑥 = 𝑤 ) ) ) |
| 21 | 17 20 | sylibr | ⊢ ( ( 𝑆 ⊆ ℝ ∧ ∃ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) → ∃! 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) |