This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a graph, the neighborhood relation is symmetric: a vertex N in a graph G is a neighbor of a second vertex K iff the second vertex K is a neighbor of the first vertex N . (Contributed by Alexander van der Vekens, 12-Oct-2017) (Revised by AV, 27-Oct-2020) (Revised by AV, 12-Feb-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nbgrsym | ⊢ ( 𝑁 ∈ ( 𝐺 NeighbVtx 𝐾 ) ↔ 𝐾 ∈ ( 𝐺 NeighbVtx 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom | ⊢ ( ( 𝑁 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐾 ∈ ( Vtx ‘ 𝐺 ) ) ↔ ( 𝐾 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) ) | |
| 2 | necom | ⊢ ( 𝑁 ≠ 𝐾 ↔ 𝐾 ≠ 𝑁 ) | |
| 3 | prcom | ⊢ { 𝐾 , 𝑁 } = { 𝑁 , 𝐾 } | |
| 4 | 3 | sseq1i | ⊢ ( { 𝐾 , 𝑁 } ⊆ 𝑒 ↔ { 𝑁 , 𝐾 } ⊆ 𝑒 ) |
| 5 | 4 | rexbii | ⊢ ( ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝐾 , 𝑁 } ⊆ 𝑒 ↔ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑁 , 𝐾 } ⊆ 𝑒 ) |
| 6 | 1 2 5 | 3anbi123i | ⊢ ( ( ( 𝑁 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐾 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑁 ≠ 𝐾 ∧ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝐾 , 𝑁 } ⊆ 𝑒 ) ↔ ( ( 𝐾 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝐾 ≠ 𝑁 ∧ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑁 , 𝐾 } ⊆ 𝑒 ) ) |
| 7 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 8 | eqid | ⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) | |
| 9 | 7 8 | nbgrel | ⊢ ( 𝑁 ∈ ( 𝐺 NeighbVtx 𝐾 ) ↔ ( ( 𝑁 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐾 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝑁 ≠ 𝐾 ∧ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝐾 , 𝑁 } ⊆ 𝑒 ) ) |
| 10 | 7 8 | nbgrel | ⊢ ( 𝐾 ∈ ( 𝐺 NeighbVtx 𝑁 ) ↔ ( ( 𝐾 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) ∧ 𝐾 ≠ 𝑁 ∧ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑁 , 𝐾 } ⊆ 𝑒 ) ) |
| 11 | 6 9 10 | 3bitr4i | ⊢ ( 𝑁 ∈ ( 𝐺 NeighbVtx 𝐾 ) ↔ 𝐾 ∈ ( 𝐺 NeighbVtx 𝑁 ) ) |