This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a graph, the neighborhood relation is symmetric: a vertex N in a graph G is a neighbor of a second vertex K iff the second vertex K is a neighbor of the first vertex N . (Contributed by Alexander van der Vekens, 12-Oct-2017) (Revised by AV, 27-Oct-2020) (Revised by AV, 12-Feb-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nbgrsym | |- ( N e. ( G NeighbVtx K ) <-> K e. ( G NeighbVtx N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom | |- ( ( N e. ( Vtx ` G ) /\ K e. ( Vtx ` G ) ) <-> ( K e. ( Vtx ` G ) /\ N e. ( Vtx ` G ) ) ) |
|
| 2 | necom | |- ( N =/= K <-> K =/= N ) |
|
| 3 | prcom | |- { K , N } = { N , K } |
|
| 4 | 3 | sseq1i | |- ( { K , N } C_ e <-> { N , K } C_ e ) |
| 5 | 4 | rexbii | |- ( E. e e. ( Edg ` G ) { K , N } C_ e <-> E. e e. ( Edg ` G ) { N , K } C_ e ) |
| 6 | 1 2 5 | 3anbi123i | |- ( ( ( N e. ( Vtx ` G ) /\ K e. ( Vtx ` G ) ) /\ N =/= K /\ E. e e. ( Edg ` G ) { K , N } C_ e ) <-> ( ( K e. ( Vtx ` G ) /\ N e. ( Vtx ` G ) ) /\ K =/= N /\ E. e e. ( Edg ` G ) { N , K } C_ e ) ) |
| 7 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 8 | eqid | |- ( Edg ` G ) = ( Edg ` G ) |
|
| 9 | 7 8 | nbgrel | |- ( N e. ( G NeighbVtx K ) <-> ( ( N e. ( Vtx ` G ) /\ K e. ( Vtx ` G ) ) /\ N =/= K /\ E. e e. ( Edg ` G ) { K , N } C_ e ) ) |
| 10 | 7 8 | nbgrel | |- ( K e. ( G NeighbVtx N ) <-> ( ( K e. ( Vtx ` G ) /\ N e. ( Vtx ` G ) ) /\ K =/= N /\ E. e e. ( Edg ` G ) { N , K } C_ e ) ) |
| 11 | 6 9 10 | 3bitr4i | |- ( N e. ( G NeighbVtx K ) <-> K e. ( G NeighbVtx N ) ) |