This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The neighbors of a vertex X form a subset of all vertices except the vertex X itself and a class M which is not a neighbor of X . (Contributed by Alexander van der Vekens, 13-Jul-2018) (Revised by AV, 3-Nov-2020) (Revised by AV, 12-Feb-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nbgrssovtx.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| Assertion | nbgrssvwo2 | ⊢ ( 𝑀 ∉ ( 𝐺 NeighbVtx 𝑋 ) → ( 𝐺 NeighbVtx 𝑋 ) ⊆ ( 𝑉 ∖ { 𝑀 , 𝑋 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nbgrssovtx.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | 1 | nbgrssovtx | ⊢ ( 𝐺 NeighbVtx 𝑋 ) ⊆ ( 𝑉 ∖ { 𝑋 } ) |
| 3 | df-nel | ⊢ ( 𝑀 ∉ ( 𝐺 NeighbVtx 𝑋 ) ↔ ¬ 𝑀 ∈ ( 𝐺 NeighbVtx 𝑋 ) ) | |
| 4 | disjsn | ⊢ ( ( ( 𝐺 NeighbVtx 𝑋 ) ∩ { 𝑀 } ) = ∅ ↔ ¬ 𝑀 ∈ ( 𝐺 NeighbVtx 𝑋 ) ) | |
| 5 | 3 4 | sylbb2 | ⊢ ( 𝑀 ∉ ( 𝐺 NeighbVtx 𝑋 ) → ( ( 𝐺 NeighbVtx 𝑋 ) ∩ { 𝑀 } ) = ∅ ) |
| 6 | reldisj | ⊢ ( ( 𝐺 NeighbVtx 𝑋 ) ⊆ ( 𝑉 ∖ { 𝑋 } ) → ( ( ( 𝐺 NeighbVtx 𝑋 ) ∩ { 𝑀 } ) = ∅ ↔ ( 𝐺 NeighbVtx 𝑋 ) ⊆ ( ( 𝑉 ∖ { 𝑋 } ) ∖ { 𝑀 } ) ) ) | |
| 7 | 5 6 | imbitrid | ⊢ ( ( 𝐺 NeighbVtx 𝑋 ) ⊆ ( 𝑉 ∖ { 𝑋 } ) → ( 𝑀 ∉ ( 𝐺 NeighbVtx 𝑋 ) → ( 𝐺 NeighbVtx 𝑋 ) ⊆ ( ( 𝑉 ∖ { 𝑋 } ) ∖ { 𝑀 } ) ) ) |
| 8 | 2 7 | ax-mp | ⊢ ( 𝑀 ∉ ( 𝐺 NeighbVtx 𝑋 ) → ( 𝐺 NeighbVtx 𝑋 ) ⊆ ( ( 𝑉 ∖ { 𝑋 } ) ∖ { 𝑀 } ) ) |
| 9 | prcom | ⊢ { 𝑀 , 𝑋 } = { 𝑋 , 𝑀 } | |
| 10 | 9 | difeq2i | ⊢ ( 𝑉 ∖ { 𝑀 , 𝑋 } ) = ( 𝑉 ∖ { 𝑋 , 𝑀 } ) |
| 11 | difpr | ⊢ ( 𝑉 ∖ { 𝑋 , 𝑀 } ) = ( ( 𝑉 ∖ { 𝑋 } ) ∖ { 𝑀 } ) | |
| 12 | 10 11 | eqtri | ⊢ ( 𝑉 ∖ { 𝑀 , 𝑋 } ) = ( ( 𝑉 ∖ { 𝑋 } ) ∖ { 𝑀 } ) |
| 13 | 8 12 | sseqtrrdi | ⊢ ( 𝑀 ∉ ( 𝐺 NeighbVtx 𝑋 ) → ( 𝐺 NeighbVtx 𝑋 ) ⊆ ( 𝑉 ∖ { 𝑀 , 𝑋 } ) ) |