This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The neighbors of a vertex X form a subset of all vertices except the vertex X itself and a class M which is not a neighbor of X . (Contributed by Alexander van der Vekens, 13-Jul-2018) (Revised by AV, 3-Nov-2020) (Revised by AV, 12-Feb-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nbgrssovtx.v | |- V = ( Vtx ` G ) |
|
| Assertion | nbgrssvwo2 | |- ( M e/ ( G NeighbVtx X ) -> ( G NeighbVtx X ) C_ ( V \ { M , X } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nbgrssovtx.v | |- V = ( Vtx ` G ) |
|
| 2 | 1 | nbgrssovtx | |- ( G NeighbVtx X ) C_ ( V \ { X } ) |
| 3 | df-nel | |- ( M e/ ( G NeighbVtx X ) <-> -. M e. ( G NeighbVtx X ) ) |
|
| 4 | disjsn | |- ( ( ( G NeighbVtx X ) i^i { M } ) = (/) <-> -. M e. ( G NeighbVtx X ) ) |
|
| 5 | 3 4 | sylbb2 | |- ( M e/ ( G NeighbVtx X ) -> ( ( G NeighbVtx X ) i^i { M } ) = (/) ) |
| 6 | reldisj | |- ( ( G NeighbVtx X ) C_ ( V \ { X } ) -> ( ( ( G NeighbVtx X ) i^i { M } ) = (/) <-> ( G NeighbVtx X ) C_ ( ( V \ { X } ) \ { M } ) ) ) |
|
| 7 | 5 6 | imbitrid | |- ( ( G NeighbVtx X ) C_ ( V \ { X } ) -> ( M e/ ( G NeighbVtx X ) -> ( G NeighbVtx X ) C_ ( ( V \ { X } ) \ { M } ) ) ) |
| 8 | 2 7 | ax-mp | |- ( M e/ ( G NeighbVtx X ) -> ( G NeighbVtx X ) C_ ( ( V \ { X } ) \ { M } ) ) |
| 9 | prcom | |- { M , X } = { X , M } |
|
| 10 | 9 | difeq2i | |- ( V \ { M , X } ) = ( V \ { X , M } ) |
| 11 | difpr | |- ( V \ { X , M } ) = ( ( V \ { X } ) \ { M } ) |
|
| 12 | 10 11 | eqtri | |- ( V \ { M , X } ) = ( ( V \ { X } ) \ { M } ) |
| 13 | 8 12 | sseqtrrdi | |- ( M e/ ( G NeighbVtx X ) -> ( G NeighbVtx X ) C_ ( V \ { M , X } ) ) |