This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The neighbors of a vertex X form a subset of all vertices except the vertex X itself. Stronger version of nbgrssvtx . (Contributed by Alexander van der Vekens, 13-Jul-2018) (Revised by AV, 3-Nov-2020) (Revised by AV, 12-Feb-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nbgrssovtx.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| Assertion | nbgrssovtx | ⊢ ( 𝐺 NeighbVtx 𝑋 ) ⊆ ( 𝑉 ∖ { 𝑋 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nbgrssovtx.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | 1 | nbgrisvtx | ⊢ ( 𝑣 ∈ ( 𝐺 NeighbVtx 𝑋 ) → 𝑣 ∈ 𝑉 ) |
| 3 | nbgrnself2 | ⊢ 𝑋 ∉ ( 𝐺 NeighbVtx 𝑋 ) | |
| 4 | df-nel | ⊢ ( 𝑣 ∉ ( 𝐺 NeighbVtx 𝑋 ) ↔ ¬ 𝑣 ∈ ( 𝐺 NeighbVtx 𝑋 ) ) | |
| 5 | neleq1 | ⊢ ( 𝑣 = 𝑋 → ( 𝑣 ∉ ( 𝐺 NeighbVtx 𝑋 ) ↔ 𝑋 ∉ ( 𝐺 NeighbVtx 𝑋 ) ) ) | |
| 6 | 4 5 | bitr3id | ⊢ ( 𝑣 = 𝑋 → ( ¬ 𝑣 ∈ ( 𝐺 NeighbVtx 𝑋 ) ↔ 𝑋 ∉ ( 𝐺 NeighbVtx 𝑋 ) ) ) |
| 7 | 3 6 | mpbiri | ⊢ ( 𝑣 = 𝑋 → ¬ 𝑣 ∈ ( 𝐺 NeighbVtx 𝑋 ) ) |
| 8 | 7 | necon2ai | ⊢ ( 𝑣 ∈ ( 𝐺 NeighbVtx 𝑋 ) → 𝑣 ≠ 𝑋 ) |
| 9 | eldifsn | ⊢ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑋 } ) ↔ ( 𝑣 ∈ 𝑉 ∧ 𝑣 ≠ 𝑋 ) ) | |
| 10 | 2 8 9 | sylanbrc | ⊢ ( 𝑣 ∈ ( 𝐺 NeighbVtx 𝑋 ) → 𝑣 ∈ ( 𝑉 ∖ { 𝑋 } ) ) |
| 11 | 10 | ssriv | ⊢ ( 𝐺 NeighbVtx 𝑋 ) ⊆ ( 𝑉 ∖ { 𝑋 } ) |