This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a graph with one vertex, all neighborhoods are empty. (Contributed by AV, 15-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nbgr1vtx | ⊢ ( ( ♯ ‘ ( Vtx ‘ 𝐺 ) ) = 1 → ( 𝐺 NeighbVtx 𝐾 ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex | ⊢ ( Vtx ‘ 𝐺 ) ∈ V | |
| 2 | hash1snb | ⊢ ( ( Vtx ‘ 𝐺 ) ∈ V → ( ( ♯ ‘ ( Vtx ‘ 𝐺 ) ) = 1 ↔ ∃ 𝑣 ( Vtx ‘ 𝐺 ) = { 𝑣 } ) ) | |
| 3 | 1 2 | ax-mp | ⊢ ( ( ♯ ‘ ( Vtx ‘ 𝐺 ) ) = 1 ↔ ∃ 𝑣 ( Vtx ‘ 𝐺 ) = { 𝑣 } ) |
| 4 | ral0 | ⊢ ∀ 𝑛 ∈ ∅ ¬ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝐾 , 𝑛 } ⊆ 𝑒 | |
| 5 | eleq2 | ⊢ ( ( Vtx ‘ 𝐺 ) = { 𝑣 } → ( 𝐾 ∈ ( Vtx ‘ 𝐺 ) ↔ 𝐾 ∈ { 𝑣 } ) ) | |
| 6 | simpr | ⊢ ( ( 𝐾 = 𝑣 ∧ ( Vtx ‘ 𝐺 ) = { 𝑣 } ) → ( Vtx ‘ 𝐺 ) = { 𝑣 } ) | |
| 7 | sneq | ⊢ ( 𝐾 = 𝑣 → { 𝐾 } = { 𝑣 } ) | |
| 8 | 7 | adantr | ⊢ ( ( 𝐾 = 𝑣 ∧ ( Vtx ‘ 𝐺 ) = { 𝑣 } ) → { 𝐾 } = { 𝑣 } ) |
| 9 | 6 8 | difeq12d | ⊢ ( ( 𝐾 = 𝑣 ∧ ( Vtx ‘ 𝐺 ) = { 𝑣 } ) → ( ( Vtx ‘ 𝐺 ) ∖ { 𝐾 } ) = ( { 𝑣 } ∖ { 𝑣 } ) ) |
| 10 | difid | ⊢ ( { 𝑣 } ∖ { 𝑣 } ) = ∅ | |
| 11 | 9 10 | eqtrdi | ⊢ ( ( 𝐾 = 𝑣 ∧ ( Vtx ‘ 𝐺 ) = { 𝑣 } ) → ( ( Vtx ‘ 𝐺 ) ∖ { 𝐾 } ) = ∅ ) |
| 12 | 11 | ex | ⊢ ( 𝐾 = 𝑣 → ( ( Vtx ‘ 𝐺 ) = { 𝑣 } → ( ( Vtx ‘ 𝐺 ) ∖ { 𝐾 } ) = ∅ ) ) |
| 13 | elsni | ⊢ ( 𝐾 ∈ { 𝑣 } → 𝐾 = 𝑣 ) | |
| 14 | 12 13 | syl11 | ⊢ ( ( Vtx ‘ 𝐺 ) = { 𝑣 } → ( 𝐾 ∈ { 𝑣 } → ( ( Vtx ‘ 𝐺 ) ∖ { 𝐾 } ) = ∅ ) ) |
| 15 | 5 14 | sylbid | ⊢ ( ( Vtx ‘ 𝐺 ) = { 𝑣 } → ( 𝐾 ∈ ( Vtx ‘ 𝐺 ) → ( ( Vtx ‘ 𝐺 ) ∖ { 𝐾 } ) = ∅ ) ) |
| 16 | 15 | imp | ⊢ ( ( ( Vtx ‘ 𝐺 ) = { 𝑣 } ∧ 𝐾 ∈ ( Vtx ‘ 𝐺 ) ) → ( ( Vtx ‘ 𝐺 ) ∖ { 𝐾 } ) = ∅ ) |
| 17 | 16 | raleqdv | ⊢ ( ( ( Vtx ‘ 𝐺 ) = { 𝑣 } ∧ 𝐾 ∈ ( Vtx ‘ 𝐺 ) ) → ( ∀ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝐾 } ) ¬ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝐾 , 𝑛 } ⊆ 𝑒 ↔ ∀ 𝑛 ∈ ∅ ¬ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝐾 , 𝑛 } ⊆ 𝑒 ) ) |
| 18 | 4 17 | mpbiri | ⊢ ( ( ( Vtx ‘ 𝐺 ) = { 𝑣 } ∧ 𝐾 ∈ ( Vtx ‘ 𝐺 ) ) → ∀ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝐾 } ) ¬ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝐾 , 𝑛 } ⊆ 𝑒 ) |
| 19 | 18 | ex | ⊢ ( ( Vtx ‘ 𝐺 ) = { 𝑣 } → ( 𝐾 ∈ ( Vtx ‘ 𝐺 ) → ∀ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝐾 } ) ¬ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝐾 , 𝑛 } ⊆ 𝑒 ) ) |
| 20 | 19 | exlimiv | ⊢ ( ∃ 𝑣 ( Vtx ‘ 𝐺 ) = { 𝑣 } → ( 𝐾 ∈ ( Vtx ‘ 𝐺 ) → ∀ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝐾 } ) ¬ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝐾 , 𝑛 } ⊆ 𝑒 ) ) |
| 21 | 3 20 | sylbi | ⊢ ( ( ♯ ‘ ( Vtx ‘ 𝐺 ) ) = 1 → ( 𝐾 ∈ ( Vtx ‘ 𝐺 ) → ∀ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝐾 } ) ¬ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝐾 , 𝑛 } ⊆ 𝑒 ) ) |
| 22 | 21 | impcom | ⊢ ( ( 𝐾 ∈ ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ ( Vtx ‘ 𝐺 ) ) = 1 ) → ∀ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝐾 } ) ¬ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝐾 , 𝑛 } ⊆ 𝑒 ) |
| 23 | 22 | nbgr0edglem | ⊢ ( ( 𝐾 ∈ ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ ( Vtx ‘ 𝐺 ) ) = 1 ) → ( 𝐺 NeighbVtx 𝐾 ) = ∅ ) |
| 24 | 23 | ex | ⊢ ( 𝐾 ∈ ( Vtx ‘ 𝐺 ) → ( ( ♯ ‘ ( Vtx ‘ 𝐺 ) ) = 1 → ( 𝐺 NeighbVtx 𝐾 ) = ∅ ) ) |
| 25 | df-nel | ⊢ ( 𝐾 ∉ ( Vtx ‘ 𝐺 ) ↔ ¬ 𝐾 ∈ ( Vtx ‘ 𝐺 ) ) | |
| 26 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 27 | 26 | nbgrnvtx0 | ⊢ ( 𝐾 ∉ ( Vtx ‘ 𝐺 ) → ( 𝐺 NeighbVtx 𝐾 ) = ∅ ) |
| 28 | 25 27 | sylbir | ⊢ ( ¬ 𝐾 ∈ ( Vtx ‘ 𝐺 ) → ( 𝐺 NeighbVtx 𝐾 ) = ∅ ) |
| 29 | 28 | a1d | ⊢ ( ¬ 𝐾 ∈ ( Vtx ‘ 𝐺 ) → ( ( ♯ ‘ ( Vtx ‘ 𝐺 ) ) = 1 → ( 𝐺 NeighbVtx 𝐾 ) = ∅ ) ) |
| 30 | 24 29 | pm2.61i | ⊢ ( ( ♯ ‘ ( Vtx ‘ 𝐺 ) ) = 1 → ( 𝐺 NeighbVtx 𝐾 ) = ∅ ) |