This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for nbgr0edg and nbgr1vtx . (Contributed by AV, 15-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nbgr0edglem.v | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝐾 } ) ¬ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝐾 , 𝑛 } ⊆ 𝑒 ) | |
| Assertion | nbgr0edglem | ⊢ ( 𝜑 → ( 𝐺 NeighbVtx 𝐾 ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nbgr0edglem.v | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝐾 } ) ¬ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝐾 , 𝑛 } ⊆ 𝑒 ) | |
| 2 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 3 | eqid | ⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) | |
| 4 | 2 3 | nbgrval | ⊢ ( 𝐾 ∈ ( Vtx ‘ 𝐺 ) → ( 𝐺 NeighbVtx 𝐾 ) = { 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝐾 } ) ∣ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝐾 , 𝑛 } ⊆ 𝑒 } ) |
| 5 | 4 | ad2antrl | ⊢ ( ( ( 𝐺 ∈ V ∧ 𝐾 ∈ V ) ∧ ( 𝐾 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝜑 ) ) → ( 𝐺 NeighbVtx 𝐾 ) = { 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝐾 } ) ∣ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝐾 , 𝑛 } ⊆ 𝑒 } ) |
| 6 | 1 | ad2antll | ⊢ ( ( ( 𝐺 ∈ V ∧ 𝐾 ∈ V ) ∧ ( 𝐾 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝜑 ) ) → ∀ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝐾 } ) ¬ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝐾 , 𝑛 } ⊆ 𝑒 ) |
| 7 | rabeq0 | ⊢ ( { 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝐾 } ) ∣ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝐾 , 𝑛 } ⊆ 𝑒 } = ∅ ↔ ∀ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝐾 } ) ¬ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝐾 , 𝑛 } ⊆ 𝑒 ) | |
| 8 | 6 7 | sylibr | ⊢ ( ( ( 𝐺 ∈ V ∧ 𝐾 ∈ V ) ∧ ( 𝐾 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝜑 ) ) → { 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝐾 } ) ∣ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝐾 , 𝑛 } ⊆ 𝑒 } = ∅ ) |
| 9 | 5 8 | eqtrd | ⊢ ( ( ( 𝐺 ∈ V ∧ 𝐾 ∈ V ) ∧ ( 𝐾 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝜑 ) ) → ( 𝐺 NeighbVtx 𝐾 ) = ∅ ) |
| 10 | 9 | expcom | ⊢ ( ( 𝐾 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝜑 ) → ( ( 𝐺 ∈ V ∧ 𝐾 ∈ V ) → ( 𝐺 NeighbVtx 𝐾 ) = ∅ ) ) |
| 11 | 10 | ex | ⊢ ( 𝐾 ∈ ( Vtx ‘ 𝐺 ) → ( 𝜑 → ( ( 𝐺 ∈ V ∧ 𝐾 ∈ V ) → ( 𝐺 NeighbVtx 𝐾 ) = ∅ ) ) ) |
| 12 | 11 | com23 | ⊢ ( 𝐾 ∈ ( Vtx ‘ 𝐺 ) → ( ( 𝐺 ∈ V ∧ 𝐾 ∈ V ) → ( 𝜑 → ( 𝐺 NeighbVtx 𝐾 ) = ∅ ) ) ) |
| 13 | df-nel | ⊢ ( 𝐾 ∉ ( Vtx ‘ 𝐺 ) ↔ ¬ 𝐾 ∈ ( Vtx ‘ 𝐺 ) ) | |
| 14 | 2 | nbgrnvtx0 | ⊢ ( 𝐾 ∉ ( Vtx ‘ 𝐺 ) → ( 𝐺 NeighbVtx 𝐾 ) = ∅ ) |
| 15 | 13 14 | sylbir | ⊢ ( ¬ 𝐾 ∈ ( Vtx ‘ 𝐺 ) → ( 𝐺 NeighbVtx 𝐾 ) = ∅ ) |
| 16 | 15 | a1d | ⊢ ( ¬ 𝐾 ∈ ( Vtx ‘ 𝐺 ) → ( 𝜑 → ( 𝐺 NeighbVtx 𝐾 ) = ∅ ) ) |
| 17 | nbgrprc0 | ⊢ ( ¬ ( 𝐺 ∈ V ∧ 𝐾 ∈ V ) → ( 𝐺 NeighbVtx 𝐾 ) = ∅ ) | |
| 18 | 17 | a1d | ⊢ ( ¬ ( 𝐺 ∈ V ∧ 𝐾 ∈ V ) → ( 𝜑 → ( 𝐺 NeighbVtx 𝐾 ) = ∅ ) ) |
| 19 | 12 16 18 | pm2.61nii | ⊢ ( 𝜑 → ( 𝐺 NeighbVtx 𝐾 ) = ∅ ) |