This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A vertex in a graph is not a neighbor of itself. (Contributed by Alexander van der Vekens, 12-Oct-2017) (Revised by AV, 3-Nov-2020) (Revised by AV, 21-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nbgrnself.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| Assertion | nbgrnself | ⊢ ∀ 𝑣 ∈ 𝑉 𝑣 ∉ ( 𝐺 NeighbVtx 𝑣 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nbgrnself.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | neldifsnd | ⊢ ( 𝑣 ∈ 𝑉 → ¬ 𝑣 ∈ ( 𝑉 ∖ { 𝑣 } ) ) | |
| 3 | 2 | intnanrd | ⊢ ( 𝑣 ∈ 𝑉 → ¬ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑣 } ) ∧ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑣 , 𝑣 } ⊆ 𝑒 ) ) |
| 4 | df-nel | ⊢ ( 𝑣 ∉ { 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) ∣ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑣 , 𝑛 } ⊆ 𝑒 } ↔ ¬ 𝑣 ∈ { 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) ∣ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑣 , 𝑛 } ⊆ 𝑒 } ) | |
| 5 | preq2 | ⊢ ( 𝑛 = 𝑣 → { 𝑣 , 𝑛 } = { 𝑣 , 𝑣 } ) | |
| 6 | 5 | sseq1d | ⊢ ( 𝑛 = 𝑣 → ( { 𝑣 , 𝑛 } ⊆ 𝑒 ↔ { 𝑣 , 𝑣 } ⊆ 𝑒 ) ) |
| 7 | 6 | rexbidv | ⊢ ( 𝑛 = 𝑣 → ( ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑣 , 𝑛 } ⊆ 𝑒 ↔ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑣 , 𝑣 } ⊆ 𝑒 ) ) |
| 8 | 7 | elrab | ⊢ ( 𝑣 ∈ { 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) ∣ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑣 , 𝑛 } ⊆ 𝑒 } ↔ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑣 } ) ∧ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑣 , 𝑣 } ⊆ 𝑒 ) ) |
| 9 | 4 8 | xchbinx | ⊢ ( 𝑣 ∉ { 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) ∣ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑣 , 𝑛 } ⊆ 𝑒 } ↔ ¬ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑣 } ) ∧ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑣 , 𝑣 } ⊆ 𝑒 ) ) |
| 10 | 3 9 | sylibr | ⊢ ( 𝑣 ∈ 𝑉 → 𝑣 ∉ { 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) ∣ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑣 , 𝑛 } ⊆ 𝑒 } ) |
| 11 | eqidd | ⊢ ( 𝑣 ∈ 𝑉 → 𝑣 = 𝑣 ) | |
| 12 | eqid | ⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) | |
| 13 | 1 12 | nbgrval | ⊢ ( 𝑣 ∈ 𝑉 → ( 𝐺 NeighbVtx 𝑣 ) = { 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) ∣ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑣 , 𝑛 } ⊆ 𝑒 } ) |
| 14 | 11 13 | neleq12d | ⊢ ( 𝑣 ∈ 𝑉 → ( 𝑣 ∉ ( 𝐺 NeighbVtx 𝑣 ) ↔ 𝑣 ∉ { 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) ∣ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑣 , 𝑛 } ⊆ 𝑒 } ) ) |
| 15 | 10 14 | mpbird | ⊢ ( 𝑣 ∈ 𝑉 → 𝑣 ∉ ( 𝐺 NeighbVtx 𝑣 ) ) |
| 16 | 15 | rgen | ⊢ ∀ 𝑣 ∈ 𝑉 𝑣 ∉ ( 𝐺 NeighbVtx 𝑣 ) |