This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a graph with one vertex, all neighborhoods are empty. (Contributed by AV, 15-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nbgr1vtx | |- ( ( # ` ( Vtx ` G ) ) = 1 -> ( G NeighbVtx K ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex | |- ( Vtx ` G ) e. _V |
|
| 2 | hash1snb | |- ( ( Vtx ` G ) e. _V -> ( ( # ` ( Vtx ` G ) ) = 1 <-> E. v ( Vtx ` G ) = { v } ) ) |
|
| 3 | 1 2 | ax-mp | |- ( ( # ` ( Vtx ` G ) ) = 1 <-> E. v ( Vtx ` G ) = { v } ) |
| 4 | ral0 | |- A. n e. (/) -. E. e e. ( Edg ` G ) { K , n } C_ e |
|
| 5 | eleq2 | |- ( ( Vtx ` G ) = { v } -> ( K e. ( Vtx ` G ) <-> K e. { v } ) ) |
|
| 6 | simpr | |- ( ( K = v /\ ( Vtx ` G ) = { v } ) -> ( Vtx ` G ) = { v } ) |
|
| 7 | sneq | |- ( K = v -> { K } = { v } ) |
|
| 8 | 7 | adantr | |- ( ( K = v /\ ( Vtx ` G ) = { v } ) -> { K } = { v } ) |
| 9 | 6 8 | difeq12d | |- ( ( K = v /\ ( Vtx ` G ) = { v } ) -> ( ( Vtx ` G ) \ { K } ) = ( { v } \ { v } ) ) |
| 10 | difid | |- ( { v } \ { v } ) = (/) |
|
| 11 | 9 10 | eqtrdi | |- ( ( K = v /\ ( Vtx ` G ) = { v } ) -> ( ( Vtx ` G ) \ { K } ) = (/) ) |
| 12 | 11 | ex | |- ( K = v -> ( ( Vtx ` G ) = { v } -> ( ( Vtx ` G ) \ { K } ) = (/) ) ) |
| 13 | elsni | |- ( K e. { v } -> K = v ) |
|
| 14 | 12 13 | syl11 | |- ( ( Vtx ` G ) = { v } -> ( K e. { v } -> ( ( Vtx ` G ) \ { K } ) = (/) ) ) |
| 15 | 5 14 | sylbid | |- ( ( Vtx ` G ) = { v } -> ( K e. ( Vtx ` G ) -> ( ( Vtx ` G ) \ { K } ) = (/) ) ) |
| 16 | 15 | imp | |- ( ( ( Vtx ` G ) = { v } /\ K e. ( Vtx ` G ) ) -> ( ( Vtx ` G ) \ { K } ) = (/) ) |
| 17 | 16 | raleqdv | |- ( ( ( Vtx ` G ) = { v } /\ K e. ( Vtx ` G ) ) -> ( A. n e. ( ( Vtx ` G ) \ { K } ) -. E. e e. ( Edg ` G ) { K , n } C_ e <-> A. n e. (/) -. E. e e. ( Edg ` G ) { K , n } C_ e ) ) |
| 18 | 4 17 | mpbiri | |- ( ( ( Vtx ` G ) = { v } /\ K e. ( Vtx ` G ) ) -> A. n e. ( ( Vtx ` G ) \ { K } ) -. E. e e. ( Edg ` G ) { K , n } C_ e ) |
| 19 | 18 | ex | |- ( ( Vtx ` G ) = { v } -> ( K e. ( Vtx ` G ) -> A. n e. ( ( Vtx ` G ) \ { K } ) -. E. e e. ( Edg ` G ) { K , n } C_ e ) ) |
| 20 | 19 | exlimiv | |- ( E. v ( Vtx ` G ) = { v } -> ( K e. ( Vtx ` G ) -> A. n e. ( ( Vtx ` G ) \ { K } ) -. E. e e. ( Edg ` G ) { K , n } C_ e ) ) |
| 21 | 3 20 | sylbi | |- ( ( # ` ( Vtx ` G ) ) = 1 -> ( K e. ( Vtx ` G ) -> A. n e. ( ( Vtx ` G ) \ { K } ) -. E. e e. ( Edg ` G ) { K , n } C_ e ) ) |
| 22 | 21 | impcom | |- ( ( K e. ( Vtx ` G ) /\ ( # ` ( Vtx ` G ) ) = 1 ) -> A. n e. ( ( Vtx ` G ) \ { K } ) -. E. e e. ( Edg ` G ) { K , n } C_ e ) |
| 23 | 22 | nbgr0edglem | |- ( ( K e. ( Vtx ` G ) /\ ( # ` ( Vtx ` G ) ) = 1 ) -> ( G NeighbVtx K ) = (/) ) |
| 24 | 23 | ex | |- ( K e. ( Vtx ` G ) -> ( ( # ` ( Vtx ` G ) ) = 1 -> ( G NeighbVtx K ) = (/) ) ) |
| 25 | df-nel | |- ( K e/ ( Vtx ` G ) <-> -. K e. ( Vtx ` G ) ) |
|
| 26 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 27 | 26 | nbgrnvtx0 | |- ( K e/ ( Vtx ` G ) -> ( G NeighbVtx K ) = (/) ) |
| 28 | 25 27 | sylbir | |- ( -. K e. ( Vtx ` G ) -> ( G NeighbVtx K ) = (/) ) |
| 29 | 28 | a1d | |- ( -. K e. ( Vtx ` G ) -> ( ( # ` ( Vtx ` G ) ) = 1 -> ( G NeighbVtx K ) = (/) ) ) |
| 30 | 24 29 | pm2.61i | |- ( ( # ` ( Vtx ` G ) ) = 1 -> ( G NeighbVtx K ) = (/) ) |