This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If there is a vertex which is not a neighbor of another vertex, the number of neighbors of the other vertex is at most the number of vertices of the graph minus 2 in a finite simple graph. (Contributed by AV, 16-Dec-2020) (Proof shortened by AV, 13-Feb-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hashnbusgrnn0.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| Assertion | nbfusgrlevtxm2 | ⊢ ( ( ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ∧ 𝑀 ∉ ( 𝐺 NeighbVtx 𝑈 ) ) ) → ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) ≤ ( ( ♯ ‘ 𝑉 ) − 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashnbusgrnn0.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | 1 | fvexi | ⊢ 𝑉 ∈ V |
| 3 | difexg | ⊢ ( 𝑉 ∈ V → ( 𝑉 ∖ { 𝑀 , 𝑈 } ) ∈ V ) | |
| 4 | 2 3 | mp1i | ⊢ ( ( ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ∧ 𝑀 ∉ ( 𝐺 NeighbVtx 𝑈 ) ) ) → ( 𝑉 ∖ { 𝑀 , 𝑈 } ) ∈ V ) |
| 5 | simpr3 | ⊢ ( ( ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ∧ 𝑀 ∉ ( 𝐺 NeighbVtx 𝑈 ) ) ) → 𝑀 ∉ ( 𝐺 NeighbVtx 𝑈 ) ) | |
| 6 | 1 | nbgrssvwo2 | ⊢ ( 𝑀 ∉ ( 𝐺 NeighbVtx 𝑈 ) → ( 𝐺 NeighbVtx 𝑈 ) ⊆ ( 𝑉 ∖ { 𝑀 , 𝑈 } ) ) |
| 7 | 5 6 | syl | ⊢ ( ( ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ∧ 𝑀 ∉ ( 𝐺 NeighbVtx 𝑈 ) ) ) → ( 𝐺 NeighbVtx 𝑈 ) ⊆ ( 𝑉 ∖ { 𝑀 , 𝑈 } ) ) |
| 8 | hashss | ⊢ ( ( ( 𝑉 ∖ { 𝑀 , 𝑈 } ) ∈ V ∧ ( 𝐺 NeighbVtx 𝑈 ) ⊆ ( 𝑉 ∖ { 𝑀 , 𝑈 } ) ) → ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) ≤ ( ♯ ‘ ( 𝑉 ∖ { 𝑀 , 𝑈 } ) ) ) | |
| 9 | 4 7 8 | syl2anc | ⊢ ( ( ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ∧ 𝑀 ∉ ( 𝐺 NeighbVtx 𝑈 ) ) ) → ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) ≤ ( ♯ ‘ ( 𝑉 ∖ { 𝑀 , 𝑈 } ) ) ) |
| 10 | 1 | fusgrvtxfi | ⊢ ( 𝐺 ∈ FinUSGraph → 𝑉 ∈ Fin ) |
| 11 | 10 | ad2antrr | ⊢ ( ( ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ∧ 𝑀 ∉ ( 𝐺 NeighbVtx 𝑈 ) ) ) → 𝑉 ∈ Fin ) |
| 12 | simpr1 | ⊢ ( ( ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ∧ 𝑀 ∉ ( 𝐺 NeighbVtx 𝑈 ) ) ) → 𝑀 ∈ 𝑉 ) | |
| 13 | simplr | ⊢ ( ( ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ∧ 𝑀 ∉ ( 𝐺 NeighbVtx 𝑈 ) ) ) → 𝑈 ∈ 𝑉 ) | |
| 14 | simpr2 | ⊢ ( ( ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ∧ 𝑀 ∉ ( 𝐺 NeighbVtx 𝑈 ) ) ) → 𝑀 ≠ 𝑈 ) | |
| 15 | hashdifpr | ⊢ ( ( 𝑉 ∈ Fin ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑈 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ) ) → ( ♯ ‘ ( 𝑉 ∖ { 𝑀 , 𝑈 } ) ) = ( ( ♯ ‘ 𝑉 ) − 2 ) ) | |
| 16 | 11 12 13 14 15 | syl13anc | ⊢ ( ( ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ∧ 𝑀 ∉ ( 𝐺 NeighbVtx 𝑈 ) ) ) → ( ♯ ‘ ( 𝑉 ∖ { 𝑀 , 𝑈 } ) ) = ( ( ♯ ‘ 𝑉 ) − 2 ) ) |
| 17 | 9 16 | breqtrd | ⊢ ( ( ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ∧ 𝑀 ∉ ( 𝐺 NeighbVtx 𝑈 ) ) ) → ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) ≤ ( ( ♯ ‘ 𝑉 ) − 2 ) ) |