This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the number of neighbors of a vertex in a finite simple graph is the number of vertices of the graph minus 1, each vertex except the first mentioned vertex is a neighbor of this vertex. (Contributed by Alexander van der Vekens, 14-Jul-2018) (Revised by AV, 16-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hashnbusgrnn0.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| Assertion | nbusgrvtxm1 | ⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) → ( ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) = ( ( ♯ ‘ 𝑉 ) − 1 ) → ( ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ) → 𝑀 ∈ ( 𝐺 NeighbVtx 𝑈 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashnbusgrnn0.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | ax-1 | ⊢ ( 𝑀 ∈ ( 𝐺 NeighbVtx 𝑈 ) → ( ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ) → 𝑀 ∈ ( 𝐺 NeighbVtx 𝑈 ) ) ) | |
| 3 | 2 | 2a1d | ⊢ ( 𝑀 ∈ ( 𝐺 NeighbVtx 𝑈 ) → ( ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) → ( ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) = ( ( ♯ ‘ 𝑉 ) − 1 ) → ( ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ) → 𝑀 ∈ ( 𝐺 NeighbVtx 𝑈 ) ) ) ) ) |
| 4 | simpr | ⊢ ( ( ¬ 𝑀 ∈ ( 𝐺 NeighbVtx 𝑈 ) ∧ ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) ) → ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) ) | |
| 5 | 4 | adantr | ⊢ ( ( ( ¬ 𝑀 ∈ ( 𝐺 NeighbVtx 𝑈 ) ∧ ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) ) ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ) ) → ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) ) |
| 6 | simprl | ⊢ ( ( ( ¬ 𝑀 ∈ ( 𝐺 NeighbVtx 𝑈 ) ∧ ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) ) ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ) ) → 𝑀 ∈ 𝑉 ) | |
| 7 | simpr | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ) → 𝑀 ≠ 𝑈 ) | |
| 8 | 7 | adantl | ⊢ ( ( ( ¬ 𝑀 ∈ ( 𝐺 NeighbVtx 𝑈 ) ∧ ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) ) ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ) ) → 𝑀 ≠ 𝑈 ) |
| 9 | df-nel | ⊢ ( 𝑀 ∉ ( 𝐺 NeighbVtx 𝑈 ) ↔ ¬ 𝑀 ∈ ( 𝐺 NeighbVtx 𝑈 ) ) | |
| 10 | 9 | biimpri | ⊢ ( ¬ 𝑀 ∈ ( 𝐺 NeighbVtx 𝑈 ) → 𝑀 ∉ ( 𝐺 NeighbVtx 𝑈 ) ) |
| 11 | 10 | adantr | ⊢ ( ( ¬ 𝑀 ∈ ( 𝐺 NeighbVtx 𝑈 ) ∧ ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) ) → 𝑀 ∉ ( 𝐺 NeighbVtx 𝑈 ) ) |
| 12 | 11 | adantr | ⊢ ( ( ( ¬ 𝑀 ∈ ( 𝐺 NeighbVtx 𝑈 ) ∧ ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) ) ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ) ) → 𝑀 ∉ ( 𝐺 NeighbVtx 𝑈 ) ) |
| 13 | 1 | nbfusgrlevtxm2 | ⊢ ( ( ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ∧ 𝑀 ∉ ( 𝐺 NeighbVtx 𝑈 ) ) ) → ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) ≤ ( ( ♯ ‘ 𝑉 ) − 2 ) ) |
| 14 | 5 6 8 12 13 | syl13anc | ⊢ ( ( ( ¬ 𝑀 ∈ ( 𝐺 NeighbVtx 𝑈 ) ∧ ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) ) ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ) ) → ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) ≤ ( ( ♯ ‘ 𝑉 ) − 2 ) ) |
| 15 | breq1 | ⊢ ( ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) = ( ( ♯ ‘ 𝑉 ) − 1 ) → ( ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) ≤ ( ( ♯ ‘ 𝑉 ) − 2 ) ↔ ( ( ♯ ‘ 𝑉 ) − 1 ) ≤ ( ( ♯ ‘ 𝑉 ) − 2 ) ) ) | |
| 16 | 15 | adantl | ⊢ ( ( ( ( ¬ 𝑀 ∈ ( 𝐺 NeighbVtx 𝑈 ) ∧ ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) ) ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ) ) ∧ ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) = ( ( ♯ ‘ 𝑉 ) − 1 ) ) → ( ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) ≤ ( ( ♯ ‘ 𝑉 ) − 2 ) ↔ ( ( ♯ ‘ 𝑉 ) − 1 ) ≤ ( ( ♯ ‘ 𝑉 ) − 2 ) ) ) |
| 17 | 1 | fusgrvtxfi | ⊢ ( 𝐺 ∈ FinUSGraph → 𝑉 ∈ Fin ) |
| 18 | hashcl | ⊢ ( 𝑉 ∈ Fin → ( ♯ ‘ 𝑉 ) ∈ ℕ0 ) | |
| 19 | nn0re | ⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 → ( ♯ ‘ 𝑉 ) ∈ ℝ ) | |
| 20 | 1red | ⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℝ → 1 ∈ ℝ ) | |
| 21 | 2re | ⊢ 2 ∈ ℝ | |
| 22 | 21 | a1i | ⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℝ → 2 ∈ ℝ ) |
| 23 | id | ⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℝ → ( ♯ ‘ 𝑉 ) ∈ ℝ ) | |
| 24 | 1lt2 | ⊢ 1 < 2 | |
| 25 | 24 | a1i | ⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℝ → 1 < 2 ) |
| 26 | 20 22 23 25 | ltsub2dd | ⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℝ → ( ( ♯ ‘ 𝑉 ) − 2 ) < ( ( ♯ ‘ 𝑉 ) − 1 ) ) |
| 27 | 23 22 | resubcld | ⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℝ → ( ( ♯ ‘ 𝑉 ) − 2 ) ∈ ℝ ) |
| 28 | peano2rem | ⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℝ → ( ( ♯ ‘ 𝑉 ) − 1 ) ∈ ℝ ) | |
| 29 | 27 28 | ltnled | ⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℝ → ( ( ( ♯ ‘ 𝑉 ) − 2 ) < ( ( ♯ ‘ 𝑉 ) − 1 ) ↔ ¬ ( ( ♯ ‘ 𝑉 ) − 1 ) ≤ ( ( ♯ ‘ 𝑉 ) − 2 ) ) ) |
| 30 | 26 29 | mpbid | ⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℝ → ¬ ( ( ♯ ‘ 𝑉 ) − 1 ) ≤ ( ( ♯ ‘ 𝑉 ) − 2 ) ) |
| 31 | 17 18 19 30 | 4syl | ⊢ ( 𝐺 ∈ FinUSGraph → ¬ ( ( ♯ ‘ 𝑉 ) − 1 ) ≤ ( ( ♯ ‘ 𝑉 ) − 2 ) ) |
| 32 | 31 | pm2.21d | ⊢ ( 𝐺 ∈ FinUSGraph → ( ( ( ♯ ‘ 𝑉 ) − 1 ) ≤ ( ( ♯ ‘ 𝑉 ) − 2 ) → 𝑀 ∈ ( 𝐺 NeighbVtx 𝑈 ) ) ) |
| 33 | 32 | adantr | ⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) → ( ( ( ♯ ‘ 𝑉 ) − 1 ) ≤ ( ( ♯ ‘ 𝑉 ) − 2 ) → 𝑀 ∈ ( 𝐺 NeighbVtx 𝑈 ) ) ) |
| 34 | 33 | ad3antlr | ⊢ ( ( ( ( ¬ 𝑀 ∈ ( 𝐺 NeighbVtx 𝑈 ) ∧ ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) ) ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ) ) ∧ ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) = ( ( ♯ ‘ 𝑉 ) − 1 ) ) → ( ( ( ♯ ‘ 𝑉 ) − 1 ) ≤ ( ( ♯ ‘ 𝑉 ) − 2 ) → 𝑀 ∈ ( 𝐺 NeighbVtx 𝑈 ) ) ) |
| 35 | 16 34 | sylbid | ⊢ ( ( ( ( ¬ 𝑀 ∈ ( 𝐺 NeighbVtx 𝑈 ) ∧ ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) ) ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ) ) ∧ ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) = ( ( ♯ ‘ 𝑉 ) − 1 ) ) → ( ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) ≤ ( ( ♯ ‘ 𝑉 ) − 2 ) → 𝑀 ∈ ( 𝐺 NeighbVtx 𝑈 ) ) ) |
| 36 | 35 | ex | ⊢ ( ( ( ¬ 𝑀 ∈ ( 𝐺 NeighbVtx 𝑈 ) ∧ ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) ) ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ) ) → ( ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) = ( ( ♯ ‘ 𝑉 ) − 1 ) → ( ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) ≤ ( ( ♯ ‘ 𝑉 ) − 2 ) → 𝑀 ∈ ( 𝐺 NeighbVtx 𝑈 ) ) ) ) |
| 37 | 14 36 | mpid | ⊢ ( ( ( ¬ 𝑀 ∈ ( 𝐺 NeighbVtx 𝑈 ) ∧ ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) ) ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ) ) → ( ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) = ( ( ♯ ‘ 𝑉 ) − 1 ) → 𝑀 ∈ ( 𝐺 NeighbVtx 𝑈 ) ) ) |
| 38 | 37 | ex | ⊢ ( ( ¬ 𝑀 ∈ ( 𝐺 NeighbVtx 𝑈 ) ∧ ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) ) → ( ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ) → ( ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) = ( ( ♯ ‘ 𝑉 ) − 1 ) → 𝑀 ∈ ( 𝐺 NeighbVtx 𝑈 ) ) ) ) |
| 39 | 38 | com23 | ⊢ ( ( ¬ 𝑀 ∈ ( 𝐺 NeighbVtx 𝑈 ) ∧ ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) ) → ( ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) = ( ( ♯ ‘ 𝑉 ) − 1 ) → ( ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ) → 𝑀 ∈ ( 𝐺 NeighbVtx 𝑈 ) ) ) ) |
| 40 | 39 | ex | ⊢ ( ¬ 𝑀 ∈ ( 𝐺 NeighbVtx 𝑈 ) → ( ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) → ( ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) = ( ( ♯ ‘ 𝑉 ) − 1 ) → ( ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ) → 𝑀 ∈ ( 𝐺 NeighbVtx 𝑈 ) ) ) ) ) |
| 41 | 3 40 | pm2.61i | ⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) → ( ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) = ( ( ♯ ‘ 𝑉 ) − 1 ) → ( ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑈 ) → 𝑀 ∈ ( 𝐺 NeighbVtx 𝑈 ) ) ) ) |