This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The size of the difference of a finite set and a proper pair of its elements is the set's size minus 2. (Contributed by AV, 16-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashdifpr | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐵 ≠ 𝐶 ) ) → ( ♯ ‘ ( 𝐴 ∖ { 𝐵 , 𝐶 } ) ) = ( ( ♯ ‘ 𝐴 ) − 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difpr | ⊢ ( 𝐴 ∖ { 𝐵 , 𝐶 } ) = ( ( 𝐴 ∖ { 𝐵 } ) ∖ { 𝐶 } ) | |
| 2 | 1 | a1i | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐵 ≠ 𝐶 ) ) → ( 𝐴 ∖ { 𝐵 , 𝐶 } ) = ( ( 𝐴 ∖ { 𝐵 } ) ∖ { 𝐶 } ) ) |
| 3 | 2 | fveq2d | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐵 ≠ 𝐶 ) ) → ( ♯ ‘ ( 𝐴 ∖ { 𝐵 , 𝐶 } ) ) = ( ♯ ‘ ( ( 𝐴 ∖ { 𝐵 } ) ∖ { 𝐶 } ) ) ) |
| 4 | diffi | ⊢ ( 𝐴 ∈ Fin → ( 𝐴 ∖ { 𝐵 } ) ∈ Fin ) | |
| 5 | necom | ⊢ ( 𝐵 ≠ 𝐶 ↔ 𝐶 ≠ 𝐵 ) | |
| 6 | 5 | biimpi | ⊢ ( 𝐵 ≠ 𝐶 → 𝐶 ≠ 𝐵 ) |
| 7 | 6 | anim2i | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝐵 ≠ 𝐶 ) → ( 𝐶 ∈ 𝐴 ∧ 𝐶 ≠ 𝐵 ) ) |
| 8 | 7 | 3adant1 | ⊢ ( ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐵 ≠ 𝐶 ) → ( 𝐶 ∈ 𝐴 ∧ 𝐶 ≠ 𝐵 ) ) |
| 9 | 8 | adantl | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐵 ≠ 𝐶 ) ) → ( 𝐶 ∈ 𝐴 ∧ 𝐶 ≠ 𝐵 ) ) |
| 10 | eldifsn | ⊢ ( 𝐶 ∈ ( 𝐴 ∖ { 𝐵 } ) ↔ ( 𝐶 ∈ 𝐴 ∧ 𝐶 ≠ 𝐵 ) ) | |
| 11 | 9 10 | sylibr | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐵 ≠ 𝐶 ) ) → 𝐶 ∈ ( 𝐴 ∖ { 𝐵 } ) ) |
| 12 | hashdifsn | ⊢ ( ( ( 𝐴 ∖ { 𝐵 } ) ∈ Fin ∧ 𝐶 ∈ ( 𝐴 ∖ { 𝐵 } ) ) → ( ♯ ‘ ( ( 𝐴 ∖ { 𝐵 } ) ∖ { 𝐶 } ) ) = ( ( ♯ ‘ ( 𝐴 ∖ { 𝐵 } ) ) − 1 ) ) | |
| 13 | 4 11 12 | syl2an2r | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐵 ≠ 𝐶 ) ) → ( ♯ ‘ ( ( 𝐴 ∖ { 𝐵 } ) ∖ { 𝐶 } ) ) = ( ( ♯ ‘ ( 𝐴 ∖ { 𝐵 } ) ) − 1 ) ) |
| 14 | hashdifsn | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ 𝐴 ) → ( ♯ ‘ ( 𝐴 ∖ { 𝐵 } ) ) = ( ( ♯ ‘ 𝐴 ) − 1 ) ) | |
| 15 | 14 | 3ad2antr1 | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐵 ≠ 𝐶 ) ) → ( ♯ ‘ ( 𝐴 ∖ { 𝐵 } ) ) = ( ( ♯ ‘ 𝐴 ) − 1 ) ) |
| 16 | 15 | oveq1d | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐵 ≠ 𝐶 ) ) → ( ( ♯ ‘ ( 𝐴 ∖ { 𝐵 } ) ) − 1 ) = ( ( ( ♯ ‘ 𝐴 ) − 1 ) − 1 ) ) |
| 17 | hashcl | ⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) | |
| 18 | 17 | nn0cnd | ⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐴 ) ∈ ℂ ) |
| 19 | sub1m1 | ⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℂ → ( ( ( ♯ ‘ 𝐴 ) − 1 ) − 1 ) = ( ( ♯ ‘ 𝐴 ) − 2 ) ) | |
| 20 | 18 19 | syl | ⊢ ( 𝐴 ∈ Fin → ( ( ( ♯ ‘ 𝐴 ) − 1 ) − 1 ) = ( ( ♯ ‘ 𝐴 ) − 2 ) ) |
| 21 | 20 | adantr | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐵 ≠ 𝐶 ) ) → ( ( ( ♯ ‘ 𝐴 ) − 1 ) − 1 ) = ( ( ♯ ‘ 𝐴 ) − 2 ) ) |
| 22 | 16 21 | eqtrd | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐵 ≠ 𝐶 ) ) → ( ( ♯ ‘ ( 𝐴 ∖ { 𝐵 } ) ) − 1 ) = ( ( ♯ ‘ 𝐴 ) − 2 ) ) |
| 23 | 3 13 22 | 3eqtrd | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐵 ≠ 𝐶 ) ) → ( ♯ ‘ ( 𝐴 ∖ { 𝐵 , 𝐶 } ) ) = ( ( ♯ ‘ 𝐴 ) − 2 ) ) |