This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If there is a vertex which is not a neighbor of another vertex, the number of neighbors of the other vertex is at most the number of vertices of the graph minus 2 in a finite simple graph. (Contributed by AV, 16-Dec-2020) (Proof shortened by AV, 13-Feb-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hashnbusgrnn0.v | |- V = ( Vtx ` G ) |
|
| Assertion | nbfusgrlevtxm2 | |- ( ( ( G e. FinUSGraph /\ U e. V ) /\ ( M e. V /\ M =/= U /\ M e/ ( G NeighbVtx U ) ) ) -> ( # ` ( G NeighbVtx U ) ) <_ ( ( # ` V ) - 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashnbusgrnn0.v | |- V = ( Vtx ` G ) |
|
| 2 | 1 | fvexi | |- V e. _V |
| 3 | difexg | |- ( V e. _V -> ( V \ { M , U } ) e. _V ) |
|
| 4 | 2 3 | mp1i | |- ( ( ( G e. FinUSGraph /\ U e. V ) /\ ( M e. V /\ M =/= U /\ M e/ ( G NeighbVtx U ) ) ) -> ( V \ { M , U } ) e. _V ) |
| 5 | simpr3 | |- ( ( ( G e. FinUSGraph /\ U e. V ) /\ ( M e. V /\ M =/= U /\ M e/ ( G NeighbVtx U ) ) ) -> M e/ ( G NeighbVtx U ) ) |
|
| 6 | 1 | nbgrssvwo2 | |- ( M e/ ( G NeighbVtx U ) -> ( G NeighbVtx U ) C_ ( V \ { M , U } ) ) |
| 7 | 5 6 | syl | |- ( ( ( G e. FinUSGraph /\ U e. V ) /\ ( M e. V /\ M =/= U /\ M e/ ( G NeighbVtx U ) ) ) -> ( G NeighbVtx U ) C_ ( V \ { M , U } ) ) |
| 8 | hashss | |- ( ( ( V \ { M , U } ) e. _V /\ ( G NeighbVtx U ) C_ ( V \ { M , U } ) ) -> ( # ` ( G NeighbVtx U ) ) <_ ( # ` ( V \ { M , U } ) ) ) |
|
| 9 | 4 7 8 | syl2anc | |- ( ( ( G e. FinUSGraph /\ U e. V ) /\ ( M e. V /\ M =/= U /\ M e/ ( G NeighbVtx U ) ) ) -> ( # ` ( G NeighbVtx U ) ) <_ ( # ` ( V \ { M , U } ) ) ) |
| 10 | 1 | fusgrvtxfi | |- ( G e. FinUSGraph -> V e. Fin ) |
| 11 | 10 | ad2antrr | |- ( ( ( G e. FinUSGraph /\ U e. V ) /\ ( M e. V /\ M =/= U /\ M e/ ( G NeighbVtx U ) ) ) -> V e. Fin ) |
| 12 | simpr1 | |- ( ( ( G e. FinUSGraph /\ U e. V ) /\ ( M e. V /\ M =/= U /\ M e/ ( G NeighbVtx U ) ) ) -> M e. V ) |
|
| 13 | simplr | |- ( ( ( G e. FinUSGraph /\ U e. V ) /\ ( M e. V /\ M =/= U /\ M e/ ( G NeighbVtx U ) ) ) -> U e. V ) |
|
| 14 | simpr2 | |- ( ( ( G e. FinUSGraph /\ U e. V ) /\ ( M e. V /\ M =/= U /\ M e/ ( G NeighbVtx U ) ) ) -> M =/= U ) |
|
| 15 | hashdifpr | |- ( ( V e. Fin /\ ( M e. V /\ U e. V /\ M =/= U ) ) -> ( # ` ( V \ { M , U } ) ) = ( ( # ` V ) - 2 ) ) |
|
| 16 | 11 12 13 14 15 | syl13anc | |- ( ( ( G e. FinUSGraph /\ U e. V ) /\ ( M e. V /\ M =/= U /\ M e/ ( G NeighbVtx U ) ) ) -> ( # ` ( V \ { M , U } ) ) = ( ( # ` V ) - 2 ) ) |
| 17 | 9 16 | breqtrd | |- ( ( ( G e. FinUSGraph /\ U e. V ) /\ ( M e. V /\ M =/= U /\ M e/ ( G NeighbVtx U ) ) ) -> ( # ` ( G NeighbVtx U ) ) <_ ( ( # ` V ) - 2 ) ) |