This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The number of neighbors of a vertex is at most the number of vertices of the graph minus 1 in a finite simple graph. (Contributed by AV, 16-Dec-2020) (Proof shortened by AV, 13-Feb-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hashnbusgrnn0.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| Assertion | nbfusgrlevtxm1 | ⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) → ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) ≤ ( ( ♯ ‘ 𝑉 ) − 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashnbusgrnn0.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | 1 | fvexi | ⊢ 𝑉 ∈ V |
| 3 | 2 | difexi | ⊢ ( 𝑉 ∖ { 𝑈 } ) ∈ V |
| 4 | 1 | nbgrssovtx | ⊢ ( 𝐺 NeighbVtx 𝑈 ) ⊆ ( 𝑉 ∖ { 𝑈 } ) |
| 5 | 4 | a1i | ⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) → ( 𝐺 NeighbVtx 𝑈 ) ⊆ ( 𝑉 ∖ { 𝑈 } ) ) |
| 6 | hashss | ⊢ ( ( ( 𝑉 ∖ { 𝑈 } ) ∈ V ∧ ( 𝐺 NeighbVtx 𝑈 ) ⊆ ( 𝑉 ∖ { 𝑈 } ) ) → ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) ≤ ( ♯ ‘ ( 𝑉 ∖ { 𝑈 } ) ) ) | |
| 7 | 3 5 6 | sylancr | ⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) → ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) ≤ ( ♯ ‘ ( 𝑉 ∖ { 𝑈 } ) ) ) |
| 8 | 1 | fusgrvtxfi | ⊢ ( 𝐺 ∈ FinUSGraph → 𝑉 ∈ Fin ) |
| 9 | hashdifsn | ⊢ ( ( 𝑉 ∈ Fin ∧ 𝑈 ∈ 𝑉 ) → ( ♯ ‘ ( 𝑉 ∖ { 𝑈 } ) ) = ( ( ♯ ‘ 𝑉 ) − 1 ) ) | |
| 10 | 9 | eqcomd | ⊢ ( ( 𝑉 ∈ Fin ∧ 𝑈 ∈ 𝑉 ) → ( ( ♯ ‘ 𝑉 ) − 1 ) = ( ♯ ‘ ( 𝑉 ∖ { 𝑈 } ) ) ) |
| 11 | 8 10 | sylan | ⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) → ( ( ♯ ‘ 𝑉 ) − 1 ) = ( ♯ ‘ ( 𝑉 ∖ { 𝑈 } ) ) ) |
| 12 | 7 11 | breqtrrd | ⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉 ) → ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) ≤ ( ( ♯ ‘ 𝑉 ) − 1 ) ) |