This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The size of the difference of a finite set and a singleton subset is the set's size minus 1. (Contributed by Alexander van der Vekens, 6-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashdifsn | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ 𝐴 ) → ( ♯ ‘ ( 𝐴 ∖ { 𝐵 } ) ) = ( ( ♯ ‘ 𝐴 ) − 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssi | ⊢ ( 𝐵 ∈ 𝐴 → { 𝐵 } ⊆ 𝐴 ) | |
| 2 | hashssdif | ⊢ ( ( 𝐴 ∈ Fin ∧ { 𝐵 } ⊆ 𝐴 ) → ( ♯ ‘ ( 𝐴 ∖ { 𝐵 } ) ) = ( ( ♯ ‘ 𝐴 ) − ( ♯ ‘ { 𝐵 } ) ) ) | |
| 3 | 1 2 | sylan2 | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ 𝐴 ) → ( ♯ ‘ ( 𝐴 ∖ { 𝐵 } ) ) = ( ( ♯ ‘ 𝐴 ) − ( ♯ ‘ { 𝐵 } ) ) ) |
| 4 | hashsng | ⊢ ( 𝐵 ∈ 𝐴 → ( ♯ ‘ { 𝐵 } ) = 1 ) | |
| 5 | 4 | adantl | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ 𝐴 ) → ( ♯ ‘ { 𝐵 } ) = 1 ) |
| 6 | 5 | oveq2d | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ 𝐴 ) → ( ( ♯ ‘ 𝐴 ) − ( ♯ ‘ { 𝐵 } ) ) = ( ( ♯ ‘ 𝐴 ) − 1 ) ) |
| 7 | 3 6 | eqtrd | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ 𝐴 ) → ( ♯ ‘ ( 𝐴 ∖ { 𝐵 } ) ) = ( ( ♯ ‘ 𝐴 ) − 1 ) ) |