This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The number of neighbors of a vertex is at most the number of vertices of the graph minus 1 in a finite simple graph. (Contributed by AV, 16-Dec-2020) (Proof shortened by AV, 13-Feb-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hashnbusgrnn0.v | |- V = ( Vtx ` G ) |
|
| Assertion | nbfusgrlevtxm1 | |- ( ( G e. FinUSGraph /\ U e. V ) -> ( # ` ( G NeighbVtx U ) ) <_ ( ( # ` V ) - 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashnbusgrnn0.v | |- V = ( Vtx ` G ) |
|
| 2 | 1 | fvexi | |- V e. _V |
| 3 | 2 | difexi | |- ( V \ { U } ) e. _V |
| 4 | 1 | nbgrssovtx | |- ( G NeighbVtx U ) C_ ( V \ { U } ) |
| 5 | 4 | a1i | |- ( ( G e. FinUSGraph /\ U e. V ) -> ( G NeighbVtx U ) C_ ( V \ { U } ) ) |
| 6 | hashss | |- ( ( ( V \ { U } ) e. _V /\ ( G NeighbVtx U ) C_ ( V \ { U } ) ) -> ( # ` ( G NeighbVtx U ) ) <_ ( # ` ( V \ { U } ) ) ) |
|
| 7 | 3 5 6 | sylancr | |- ( ( G e. FinUSGraph /\ U e. V ) -> ( # ` ( G NeighbVtx U ) ) <_ ( # ` ( V \ { U } ) ) ) |
| 8 | 1 | fusgrvtxfi | |- ( G e. FinUSGraph -> V e. Fin ) |
| 9 | hashdifsn | |- ( ( V e. Fin /\ U e. V ) -> ( # ` ( V \ { U } ) ) = ( ( # ` V ) - 1 ) ) |
|
| 10 | 9 | eqcomd | |- ( ( V e. Fin /\ U e. V ) -> ( ( # ` V ) - 1 ) = ( # ` ( V \ { U } ) ) ) |
| 11 | 8 10 | sylan | |- ( ( G e. FinUSGraph /\ U e. V ) -> ( ( # ` V ) - 1 ) = ( # ` ( V \ { U } ) ) ) |
| 12 | 7 11 | breqtrrd | |- ( ( G e. FinUSGraph /\ U e. V ) -> ( # ` ( G NeighbVtx U ) ) <_ ( ( # ` V ) - 1 ) ) |