This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 1 for nb3grpr . (Contributed by Alexander van der Vekens, 15-Oct-2017) (Revised by AV, 28-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nb3grpr.v | |- V = ( Vtx ` G ) |
|
| nb3grpr.e | |- E = ( Edg ` G ) |
||
| nb3grpr.g | |- ( ph -> G e. USGraph ) |
||
| nb3grpr.t | |- ( ph -> V = { A , B , C } ) |
||
| nb3grpr.s | |- ( ph -> ( A e. X /\ B e. Y /\ C e. Z ) ) |
||
| Assertion | nb3grprlem1 | |- ( ph -> ( ( G NeighbVtx A ) = { B , C } <-> ( { A , B } e. E /\ { A , C } e. E ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nb3grpr.v | |- V = ( Vtx ` G ) |
|
| 2 | nb3grpr.e | |- E = ( Edg ` G ) |
|
| 3 | nb3grpr.g | |- ( ph -> G e. USGraph ) |
|
| 4 | nb3grpr.t | |- ( ph -> V = { A , B , C } ) |
|
| 5 | nb3grpr.s | |- ( ph -> ( A e. X /\ B e. Y /\ C e. Z ) ) |
|
| 6 | prid1g | |- ( B e. Y -> B e. { B , C } ) |
|
| 7 | 6 | 3ad2ant2 | |- ( ( A e. X /\ B e. Y /\ C e. Z ) -> B e. { B , C } ) |
| 8 | 5 7 | syl | |- ( ph -> B e. { B , C } ) |
| 9 | 8 | adantr | |- ( ( ph /\ ( G NeighbVtx A ) = { B , C } ) -> B e. { B , C } ) |
| 10 | eleq2 | |- ( { B , C } = ( G NeighbVtx A ) -> ( B e. { B , C } <-> B e. ( G NeighbVtx A ) ) ) |
|
| 11 | 10 | eqcoms | |- ( ( G NeighbVtx A ) = { B , C } -> ( B e. { B , C } <-> B e. ( G NeighbVtx A ) ) ) |
| 12 | 11 | adantl | |- ( ( ph /\ ( G NeighbVtx A ) = { B , C } ) -> ( B e. { B , C } <-> B e. ( G NeighbVtx A ) ) ) |
| 13 | 9 12 | mpbid | |- ( ( ph /\ ( G NeighbVtx A ) = { B , C } ) -> B e. ( G NeighbVtx A ) ) |
| 14 | 2 | nbusgreledg | |- ( G e. USGraph -> ( B e. ( G NeighbVtx A ) <-> { B , A } e. E ) ) |
| 15 | prcom | |- { B , A } = { A , B } |
|
| 16 | 15 | a1i | |- ( G e. USGraph -> { B , A } = { A , B } ) |
| 17 | 16 | eleq1d | |- ( G e. USGraph -> ( { B , A } e. E <-> { A , B } e. E ) ) |
| 18 | 14 17 | bitrd | |- ( G e. USGraph -> ( B e. ( G NeighbVtx A ) <-> { A , B } e. E ) ) |
| 19 | 3 18 | syl | |- ( ph -> ( B e. ( G NeighbVtx A ) <-> { A , B } e. E ) ) |
| 20 | 19 | adantr | |- ( ( ph /\ ( G NeighbVtx A ) = { B , C } ) -> ( B e. ( G NeighbVtx A ) <-> { A , B } e. E ) ) |
| 21 | 13 20 | mpbid | |- ( ( ph /\ ( G NeighbVtx A ) = { B , C } ) -> { A , B } e. E ) |
| 22 | prid2g | |- ( C e. Z -> C e. { B , C } ) |
|
| 23 | 22 | 3ad2ant3 | |- ( ( A e. X /\ B e. Y /\ C e. Z ) -> C e. { B , C } ) |
| 24 | 5 23 | syl | |- ( ph -> C e. { B , C } ) |
| 25 | 24 | adantr | |- ( ( ph /\ ( G NeighbVtx A ) = { B , C } ) -> C e. { B , C } ) |
| 26 | eleq2 | |- ( { B , C } = ( G NeighbVtx A ) -> ( C e. { B , C } <-> C e. ( G NeighbVtx A ) ) ) |
|
| 27 | 26 | eqcoms | |- ( ( G NeighbVtx A ) = { B , C } -> ( C e. { B , C } <-> C e. ( G NeighbVtx A ) ) ) |
| 28 | 27 | adantl | |- ( ( ph /\ ( G NeighbVtx A ) = { B , C } ) -> ( C e. { B , C } <-> C e. ( G NeighbVtx A ) ) ) |
| 29 | 25 28 | mpbid | |- ( ( ph /\ ( G NeighbVtx A ) = { B , C } ) -> C e. ( G NeighbVtx A ) ) |
| 30 | 2 | nbusgreledg | |- ( G e. USGraph -> ( C e. ( G NeighbVtx A ) <-> { C , A } e. E ) ) |
| 31 | prcom | |- { C , A } = { A , C } |
|
| 32 | 31 | a1i | |- ( G e. USGraph -> { C , A } = { A , C } ) |
| 33 | 32 | eleq1d | |- ( G e. USGraph -> ( { C , A } e. E <-> { A , C } e. E ) ) |
| 34 | 30 33 | bitrd | |- ( G e. USGraph -> ( C e. ( G NeighbVtx A ) <-> { A , C } e. E ) ) |
| 35 | 3 34 | syl | |- ( ph -> ( C e. ( G NeighbVtx A ) <-> { A , C } e. E ) ) |
| 36 | 35 | adantr | |- ( ( ph /\ ( G NeighbVtx A ) = { B , C } ) -> ( C e. ( G NeighbVtx A ) <-> { A , C } e. E ) ) |
| 37 | 29 36 | mpbid | |- ( ( ph /\ ( G NeighbVtx A ) = { B , C } ) -> { A , C } e. E ) |
| 38 | 21 37 | jca | |- ( ( ph /\ ( G NeighbVtx A ) = { B , C } ) -> ( { A , B } e. E /\ { A , C } e. E ) ) |
| 39 | 1 2 | nbusgr | |- ( G e. USGraph -> ( G NeighbVtx A ) = { v e. V | { A , v } e. E } ) |
| 40 | 3 39 | syl | |- ( ph -> ( G NeighbVtx A ) = { v e. V | { A , v } e. E } ) |
| 41 | 40 | adantr | |- ( ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) -> ( G NeighbVtx A ) = { v e. V | { A , v } e. E } ) |
| 42 | eleq2 | |- ( V = { A , B , C } -> ( v e. V <-> v e. { A , B , C } ) ) |
|
| 43 | 4 42 | syl | |- ( ph -> ( v e. V <-> v e. { A , B , C } ) ) |
| 44 | 43 | adantr | |- ( ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) -> ( v e. V <-> v e. { A , B , C } ) ) |
| 45 | vex | |- v e. _V |
|
| 46 | 45 | eltp | |- ( v e. { A , B , C } <-> ( v = A \/ v = B \/ v = C ) ) |
| 47 | 2 | usgredgne | |- ( ( G e. USGraph /\ { A , v } e. E ) -> A =/= v ) |
| 48 | df-ne | |- ( A =/= v <-> -. A = v ) |
|
| 49 | pm2.24 | |- ( A = v -> ( -. A = v -> ( v = B \/ v = C ) ) ) |
|
| 50 | 49 | eqcoms | |- ( v = A -> ( -. A = v -> ( v = B \/ v = C ) ) ) |
| 51 | 50 | com12 | |- ( -. A = v -> ( v = A -> ( v = B \/ v = C ) ) ) |
| 52 | 48 51 | sylbi | |- ( A =/= v -> ( v = A -> ( v = B \/ v = C ) ) ) |
| 53 | 47 52 | syl | |- ( ( G e. USGraph /\ { A , v } e. E ) -> ( v = A -> ( v = B \/ v = C ) ) ) |
| 54 | 53 | ex | |- ( G e. USGraph -> ( { A , v } e. E -> ( v = A -> ( v = B \/ v = C ) ) ) ) |
| 55 | 3 54 | syl | |- ( ph -> ( { A , v } e. E -> ( v = A -> ( v = B \/ v = C ) ) ) ) |
| 56 | 55 | adantr | |- ( ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) -> ( { A , v } e. E -> ( v = A -> ( v = B \/ v = C ) ) ) ) |
| 57 | 56 | com3r | |- ( v = A -> ( ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) -> ( { A , v } e. E -> ( v = B \/ v = C ) ) ) ) |
| 58 | orc | |- ( v = B -> ( v = B \/ v = C ) ) |
|
| 59 | 58 | 2a1d | |- ( v = B -> ( ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) -> ( { A , v } e. E -> ( v = B \/ v = C ) ) ) ) |
| 60 | olc | |- ( v = C -> ( v = B \/ v = C ) ) |
|
| 61 | 60 | 2a1d | |- ( v = C -> ( ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) -> ( { A , v } e. E -> ( v = B \/ v = C ) ) ) ) |
| 62 | 57 59 61 | 3jaoi | |- ( ( v = A \/ v = B \/ v = C ) -> ( ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) -> ( { A , v } e. E -> ( v = B \/ v = C ) ) ) ) |
| 63 | 46 62 | sylbi | |- ( v e. { A , B , C } -> ( ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) -> ( { A , v } e. E -> ( v = B \/ v = C ) ) ) ) |
| 64 | 63 | com12 | |- ( ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) -> ( v e. { A , B , C } -> ( { A , v } e. E -> ( v = B \/ v = C ) ) ) ) |
| 65 | 44 64 | sylbid | |- ( ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) -> ( v e. V -> ( { A , v } e. E -> ( v = B \/ v = C ) ) ) ) |
| 66 | 65 | impd | |- ( ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) -> ( ( v e. V /\ { A , v } e. E ) -> ( v = B \/ v = C ) ) ) |
| 67 | eqid | |- B = B |
|
| 68 | 67 | 3mix2i | |- ( B = A \/ B = B \/ B = C ) |
| 69 | 5 | simp2d | |- ( ph -> B e. Y ) |
| 70 | eltpg | |- ( B e. Y -> ( B e. { A , B , C } <-> ( B = A \/ B = B \/ B = C ) ) ) |
|
| 71 | 69 70 | syl | |- ( ph -> ( B e. { A , B , C } <-> ( B = A \/ B = B \/ B = C ) ) ) |
| 72 | 68 71 | mpbiri | |- ( ph -> B e. { A , B , C } ) |
| 73 | 72 | adantr | |- ( ( ph /\ v = B ) -> B e. { A , B , C } ) |
| 74 | eleq1 | |- ( v = B -> ( v e. { A , B , C } <-> B e. { A , B , C } ) ) |
|
| 75 | 74 | bicomd | |- ( v = B -> ( B e. { A , B , C } <-> v e. { A , B , C } ) ) |
| 76 | 75 | adantl | |- ( ( ph /\ v = B ) -> ( B e. { A , B , C } <-> v e. { A , B , C } ) ) |
| 77 | 73 76 | mpbid | |- ( ( ph /\ v = B ) -> v e. { A , B , C } ) |
| 78 | 42 | bicomd | |- ( V = { A , B , C } -> ( v e. { A , B , C } <-> v e. V ) ) |
| 79 | 4 78 | syl | |- ( ph -> ( v e. { A , B , C } <-> v e. V ) ) |
| 80 | 79 | adantr | |- ( ( ph /\ v = B ) -> ( v e. { A , B , C } <-> v e. V ) ) |
| 81 | 77 80 | mpbid | |- ( ( ph /\ v = B ) -> v e. V ) |
| 82 | 81 | ex | |- ( ph -> ( v = B -> v e. V ) ) |
| 83 | 82 | adantr | |- ( ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) -> ( v = B -> v e. V ) ) |
| 84 | 83 | impcom | |- ( ( v = B /\ ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) ) -> v e. V ) |
| 85 | preq2 | |- ( B = v -> { A , B } = { A , v } ) |
|
| 86 | 85 | eleq1d | |- ( B = v -> ( { A , B } e. E <-> { A , v } e. E ) ) |
| 87 | 86 | eqcoms | |- ( v = B -> ( { A , B } e. E <-> { A , v } e. E ) ) |
| 88 | 87 | biimpcd | |- ( { A , B } e. E -> ( v = B -> { A , v } e. E ) ) |
| 89 | 88 | ad2antrl | |- ( ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) -> ( v = B -> { A , v } e. E ) ) |
| 90 | 89 | impcom | |- ( ( v = B /\ ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) ) -> { A , v } e. E ) |
| 91 | 84 90 | jca | |- ( ( v = B /\ ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) ) -> ( v e. V /\ { A , v } e. E ) ) |
| 92 | 91 | ex | |- ( v = B -> ( ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) -> ( v e. V /\ { A , v } e. E ) ) ) |
| 93 | tpid3g | |- ( C e. Z -> C e. { A , B , C } ) |
|
| 94 | 93 | 3ad2ant3 | |- ( ( A e. X /\ B e. Y /\ C e. Z ) -> C e. { A , B , C } ) |
| 95 | 5 94 | syl | |- ( ph -> C e. { A , B , C } ) |
| 96 | 95 | adantr | |- ( ( ph /\ v = C ) -> C e. { A , B , C } ) |
| 97 | eleq1 | |- ( v = C -> ( v e. { A , B , C } <-> C e. { A , B , C } ) ) |
|
| 98 | 97 | bicomd | |- ( v = C -> ( C e. { A , B , C } <-> v e. { A , B , C } ) ) |
| 99 | 98 | adantl | |- ( ( ph /\ v = C ) -> ( C e. { A , B , C } <-> v e. { A , B , C } ) ) |
| 100 | 96 99 | mpbid | |- ( ( ph /\ v = C ) -> v e. { A , B , C } ) |
| 101 | 79 | adantr | |- ( ( ph /\ v = C ) -> ( v e. { A , B , C } <-> v e. V ) ) |
| 102 | 100 101 | mpbid | |- ( ( ph /\ v = C ) -> v e. V ) |
| 103 | 102 | ex | |- ( ph -> ( v = C -> v e. V ) ) |
| 104 | 103 | adantr | |- ( ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) -> ( v = C -> v e. V ) ) |
| 105 | 104 | impcom | |- ( ( v = C /\ ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) ) -> v e. V ) |
| 106 | preq2 | |- ( C = v -> { A , C } = { A , v } ) |
|
| 107 | 106 | eleq1d | |- ( C = v -> ( { A , C } e. E <-> { A , v } e. E ) ) |
| 108 | 107 | eqcoms | |- ( v = C -> ( { A , C } e. E <-> { A , v } e. E ) ) |
| 109 | 108 | biimpcd | |- ( { A , C } e. E -> ( v = C -> { A , v } e. E ) ) |
| 110 | 109 | ad2antll | |- ( ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) -> ( v = C -> { A , v } e. E ) ) |
| 111 | 110 | impcom | |- ( ( v = C /\ ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) ) -> { A , v } e. E ) |
| 112 | 105 111 | jca | |- ( ( v = C /\ ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) ) -> ( v e. V /\ { A , v } e. E ) ) |
| 113 | 112 | ex | |- ( v = C -> ( ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) -> ( v e. V /\ { A , v } e. E ) ) ) |
| 114 | 92 113 | jaoi | |- ( ( v = B \/ v = C ) -> ( ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) -> ( v e. V /\ { A , v } e. E ) ) ) |
| 115 | 114 | com12 | |- ( ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) -> ( ( v = B \/ v = C ) -> ( v e. V /\ { A , v } e. E ) ) ) |
| 116 | 66 115 | impbid | |- ( ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) -> ( ( v e. V /\ { A , v } e. E ) <-> ( v = B \/ v = C ) ) ) |
| 117 | 116 | abbidv | |- ( ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) -> { v | ( v e. V /\ { A , v } e. E ) } = { v | ( v = B \/ v = C ) } ) |
| 118 | df-rab | |- { v e. V | { A , v } e. E } = { v | ( v e. V /\ { A , v } e. E ) } |
|
| 119 | dfpr2 | |- { B , C } = { v | ( v = B \/ v = C ) } |
|
| 120 | 117 118 119 | 3eqtr4g | |- ( ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) -> { v e. V | { A , v } e. E } = { B , C } ) |
| 121 | 41 120 | eqtrd | |- ( ( ph /\ ( { A , B } e. E /\ { A , C } e. E ) ) -> ( G NeighbVtx A ) = { B , C } ) |
| 122 | 38 121 | impbida | |- ( ph -> ( ( G NeighbVtx A ) = { B , C } <-> ( { A , B } e. E /\ { A , C } e. E ) ) ) |