This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the neighbors of two vertices in a graph with three elements are an unordered pair of the other vertices, the neighbors of all three vertices are an unordered pair of the other vertices. (Contributed by Alexander van der Vekens, 18-Oct-2017) (Revised by AV, 28-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nb3gr2nb | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( ( Vtx ‘ 𝐺 ) = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → ( ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ∧ ( 𝐺 NeighbVtx 𝐵 ) = { 𝐴 , 𝐶 } ) ↔ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ∧ ( 𝐺 NeighbVtx 𝐵 ) = { 𝐴 , 𝐶 } ∧ ( 𝐺 NeighbVtx 𝐶 ) = { 𝐴 , 𝐵 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prcom | ⊢ { 𝐴 , 𝐶 } = { 𝐶 , 𝐴 } | |
| 2 | 1 | eleq1i | ⊢ ( { 𝐴 , 𝐶 } ∈ ( Edg ‘ 𝐺 ) ↔ { 𝐶 , 𝐴 } ∈ ( Edg ‘ 𝐺 ) ) |
| 3 | 2 | biimpi | ⊢ ( { 𝐴 , 𝐶 } ∈ ( Edg ‘ 𝐺 ) → { 𝐶 , 𝐴 } ∈ ( Edg ‘ 𝐺 ) ) |
| 4 | 3 | adantl | ⊢ ( ( { 𝐴 , 𝐵 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝐴 , 𝐶 } ∈ ( Edg ‘ 𝐺 ) ) → { 𝐶 , 𝐴 } ∈ ( Edg ‘ 𝐺 ) ) |
| 5 | prcom | ⊢ { 𝐵 , 𝐶 } = { 𝐶 , 𝐵 } | |
| 6 | 5 | eleq1i | ⊢ ( { 𝐵 , 𝐶 } ∈ ( Edg ‘ 𝐺 ) ↔ { 𝐶 , 𝐵 } ∈ ( Edg ‘ 𝐺 ) ) |
| 7 | 6 | biimpi | ⊢ ( { 𝐵 , 𝐶 } ∈ ( Edg ‘ 𝐺 ) → { 𝐶 , 𝐵 } ∈ ( Edg ‘ 𝐺 ) ) |
| 8 | 7 | adantl | ⊢ ( ( { 𝐵 , 𝐴 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } ∈ ( Edg ‘ 𝐺 ) ) → { 𝐶 , 𝐵 } ∈ ( Edg ‘ 𝐺 ) ) |
| 9 | 4 8 | anim12i | ⊢ ( ( ( { 𝐴 , 𝐵 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝐴 , 𝐶 } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( { 𝐵 , 𝐴 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } ∈ ( Edg ‘ 𝐺 ) ) ) → ( { 𝐶 , 𝐴 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝐶 , 𝐵 } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 10 | 9 | a1i | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( ( Vtx ‘ 𝐺 ) = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → ( ( ( { 𝐴 , 𝐵 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝐴 , 𝐶 } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( { 𝐵 , 𝐴 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } ∈ ( Edg ‘ 𝐺 ) ) ) → ( { 𝐶 , 𝐴 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝐶 , 𝐵 } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
| 11 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 12 | eqid | ⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) | |
| 13 | simprr | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( ( Vtx ‘ 𝐺 ) = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐺 ∈ USGraph ) | |
| 14 | simprl | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( ( Vtx ‘ 𝐺 ) = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → ( Vtx ‘ 𝐺 ) = { 𝐴 , 𝐵 , 𝐶 } ) | |
| 15 | simpl | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( ( Vtx ‘ 𝐺 ) = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ) | |
| 16 | 11 12 13 14 15 | nb3grprlem1 | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( ( Vtx ‘ 𝐺 ) = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ↔ ( { 𝐴 , 𝐵 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝐴 , 𝐶 } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
| 17 | 3ancoma | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ↔ ( 𝐵 ∈ 𝑌 ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑍 ) ) | |
| 18 | 17 | biimpi | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → ( 𝐵 ∈ 𝑌 ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑍 ) ) |
| 19 | tpcoma | ⊢ { 𝐴 , 𝐵 , 𝐶 } = { 𝐵 , 𝐴 , 𝐶 } | |
| 20 | 19 | eqeq2i | ⊢ ( ( Vtx ‘ 𝐺 ) = { 𝐴 , 𝐵 , 𝐶 } ↔ ( Vtx ‘ 𝐺 ) = { 𝐵 , 𝐴 , 𝐶 } ) |
| 21 | 20 | biimpi | ⊢ ( ( Vtx ‘ 𝐺 ) = { 𝐴 , 𝐵 , 𝐶 } → ( Vtx ‘ 𝐺 ) = { 𝐵 , 𝐴 , 𝐶 } ) |
| 22 | 21 | anim1i | ⊢ ( ( ( Vtx ‘ 𝐺 ) = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) → ( ( Vtx ‘ 𝐺 ) = { 𝐵 , 𝐴 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) |
| 23 | simprr | ⊢ ( ( ( 𝐵 ∈ 𝑌 ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑍 ) ∧ ( ( Vtx ‘ 𝐺 ) = { 𝐵 , 𝐴 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → 𝐺 ∈ USGraph ) | |
| 24 | simprl | ⊢ ( ( ( 𝐵 ∈ 𝑌 ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑍 ) ∧ ( ( Vtx ‘ 𝐺 ) = { 𝐵 , 𝐴 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → ( Vtx ‘ 𝐺 ) = { 𝐵 , 𝐴 , 𝐶 } ) | |
| 25 | simpl | ⊢ ( ( ( 𝐵 ∈ 𝑌 ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑍 ) ∧ ( ( Vtx ‘ 𝐺 ) = { 𝐵 , 𝐴 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → ( 𝐵 ∈ 𝑌 ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑍 ) ) | |
| 26 | 11 12 23 24 25 | nb3grprlem1 | ⊢ ( ( ( 𝐵 ∈ 𝑌 ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑍 ) ∧ ( ( Vtx ‘ 𝐺 ) = { 𝐵 , 𝐴 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → ( ( 𝐺 NeighbVtx 𝐵 ) = { 𝐴 , 𝐶 } ↔ ( { 𝐵 , 𝐴 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
| 27 | 18 22 26 | syl2an | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( ( Vtx ‘ 𝐺 ) = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → ( ( 𝐺 NeighbVtx 𝐵 ) = { 𝐴 , 𝐶 } ↔ ( { 𝐵 , 𝐴 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
| 28 | 16 27 | anbi12d | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( ( Vtx ‘ 𝐺 ) = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → ( ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ∧ ( 𝐺 NeighbVtx 𝐵 ) = { 𝐴 , 𝐶 } ) ↔ ( ( { 𝐴 , 𝐵 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝐴 , 𝐶 } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( { 𝐵 , 𝐴 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝐵 , 𝐶 } ∈ ( Edg ‘ 𝐺 ) ) ) ) ) |
| 29 | 3anrot | ⊢ ( ( 𝐶 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ↔ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ) | |
| 30 | 29 | biimpri | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → ( 𝐶 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) |
| 31 | tprot | ⊢ { 𝐶 , 𝐴 , 𝐵 } = { 𝐴 , 𝐵 , 𝐶 } | |
| 32 | 31 | eqcomi | ⊢ { 𝐴 , 𝐵 , 𝐶 } = { 𝐶 , 𝐴 , 𝐵 } |
| 33 | 32 | eqeq2i | ⊢ ( ( Vtx ‘ 𝐺 ) = { 𝐴 , 𝐵 , 𝐶 } ↔ ( Vtx ‘ 𝐺 ) = { 𝐶 , 𝐴 , 𝐵 } ) |
| 34 | 33 | anbi1i | ⊢ ( ( ( Vtx ‘ 𝐺 ) = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ↔ ( ( Vtx ‘ 𝐺 ) = { 𝐶 , 𝐴 , 𝐵 } ∧ 𝐺 ∈ USGraph ) ) |
| 35 | 34 | biimpi | ⊢ ( ( ( Vtx ‘ 𝐺 ) = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) → ( ( Vtx ‘ 𝐺 ) = { 𝐶 , 𝐴 , 𝐵 } ∧ 𝐺 ∈ USGraph ) ) |
| 36 | simprr | ⊢ ( ( ( 𝐶 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ∧ ( ( Vtx ‘ 𝐺 ) = { 𝐶 , 𝐴 , 𝐵 } ∧ 𝐺 ∈ USGraph ) ) → 𝐺 ∈ USGraph ) | |
| 37 | simprl | ⊢ ( ( ( 𝐶 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ∧ ( ( Vtx ‘ 𝐺 ) = { 𝐶 , 𝐴 , 𝐵 } ∧ 𝐺 ∈ USGraph ) ) → ( Vtx ‘ 𝐺 ) = { 𝐶 , 𝐴 , 𝐵 } ) | |
| 38 | simpl | ⊢ ( ( ( 𝐶 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ∧ ( ( Vtx ‘ 𝐺 ) = { 𝐶 , 𝐴 , 𝐵 } ∧ 𝐺 ∈ USGraph ) ) → ( 𝐶 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) | |
| 39 | 11 12 36 37 38 | nb3grprlem1 | ⊢ ( ( ( 𝐶 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ∧ ( ( Vtx ‘ 𝐺 ) = { 𝐶 , 𝐴 , 𝐵 } ∧ 𝐺 ∈ USGraph ) ) → ( ( 𝐺 NeighbVtx 𝐶 ) = { 𝐴 , 𝐵 } ↔ ( { 𝐶 , 𝐴 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝐶 , 𝐵 } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
| 40 | 30 35 39 | syl2an | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( ( Vtx ‘ 𝐺 ) = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → ( ( 𝐺 NeighbVtx 𝐶 ) = { 𝐴 , 𝐵 } ↔ ( { 𝐶 , 𝐴 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝐶 , 𝐵 } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
| 41 | 10 28 40 | 3imtr4d | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( ( Vtx ‘ 𝐺 ) = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → ( ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ∧ ( 𝐺 NeighbVtx 𝐵 ) = { 𝐴 , 𝐶 } ) → ( 𝐺 NeighbVtx 𝐶 ) = { 𝐴 , 𝐵 } ) ) |
| 42 | 41 | pm4.71d | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( ( Vtx ‘ 𝐺 ) = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → ( ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ∧ ( 𝐺 NeighbVtx 𝐵 ) = { 𝐴 , 𝐶 } ) ↔ ( ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ∧ ( 𝐺 NeighbVtx 𝐵 ) = { 𝐴 , 𝐶 } ) ∧ ( 𝐺 NeighbVtx 𝐶 ) = { 𝐴 , 𝐵 } ) ) ) |
| 43 | df-3an | ⊢ ( ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ∧ ( 𝐺 NeighbVtx 𝐵 ) = { 𝐴 , 𝐶 } ∧ ( 𝐺 NeighbVtx 𝐶 ) = { 𝐴 , 𝐵 } ) ↔ ( ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ∧ ( 𝐺 NeighbVtx 𝐵 ) = { 𝐴 , 𝐶 } ) ∧ ( 𝐺 NeighbVtx 𝐶 ) = { 𝐴 , 𝐵 } ) ) | |
| 44 | 42 43 | bitr4di | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ ( ( Vtx ‘ 𝐺 ) = { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐺 ∈ USGraph ) ) → ( ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ∧ ( 𝐺 NeighbVtx 𝐵 ) = { 𝐴 , 𝐶 } ) ↔ ( ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 , 𝐶 } ∧ ( 𝐺 NeighbVtx 𝐵 ) = { 𝐴 , 𝐶 } ∧ ( 𝐺 NeighbVtx 𝐶 ) = { 𝐴 , 𝐵 } ) ) ) |