This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition of a natural transformation between two functors. A natural transformation A : F --> G is a collection of arrows A ( x ) : F ( x ) --> G ( x ) , such that A ( y ) o. F ( h ) = G ( h ) o. A ( x ) for each morphism h : x --> y . Definition 6.1 in Adamek p. 83, and definition in Lang p. 65. (Contributed by Mario Carneiro, 6-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-nat | ⊢ Nat = ( 𝑡 ∈ Cat , 𝑢 ∈ Cat ↦ ( 𝑓 ∈ ( 𝑡 Func 𝑢 ) , 𝑔 ∈ ( 𝑡 Func 𝑢 ) ↦ ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝑡 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝑢 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑡 ) ∀ 𝑦 ∈ ( Base ‘ 𝑡 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝑡 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cnat | ⊢ Nat | |
| 1 | vt | ⊢ 𝑡 | |
| 2 | ccat | ⊢ Cat | |
| 3 | vu | ⊢ 𝑢 | |
| 4 | vf | ⊢ 𝑓 | |
| 5 | 1 | cv | ⊢ 𝑡 |
| 6 | cfunc | ⊢ Func | |
| 7 | 3 | cv | ⊢ 𝑢 |
| 8 | 5 7 6 | co | ⊢ ( 𝑡 Func 𝑢 ) |
| 9 | vg | ⊢ 𝑔 | |
| 10 | c1st | ⊢ 1st | |
| 11 | 4 | cv | ⊢ 𝑓 |
| 12 | 11 10 | cfv | ⊢ ( 1st ‘ 𝑓 ) |
| 13 | vr | ⊢ 𝑟 | |
| 14 | 9 | cv | ⊢ 𝑔 |
| 15 | 14 10 | cfv | ⊢ ( 1st ‘ 𝑔 ) |
| 16 | vs | ⊢ 𝑠 | |
| 17 | va | ⊢ 𝑎 | |
| 18 | vx | ⊢ 𝑥 | |
| 19 | cbs | ⊢ Base | |
| 20 | 5 19 | cfv | ⊢ ( Base ‘ 𝑡 ) |
| 21 | 13 | cv | ⊢ 𝑟 |
| 22 | 18 | cv | ⊢ 𝑥 |
| 23 | 22 21 | cfv | ⊢ ( 𝑟 ‘ 𝑥 ) |
| 24 | chom | ⊢ Hom | |
| 25 | 7 24 | cfv | ⊢ ( Hom ‘ 𝑢 ) |
| 26 | 16 | cv | ⊢ 𝑠 |
| 27 | 22 26 | cfv | ⊢ ( 𝑠 ‘ 𝑥 ) |
| 28 | 23 27 25 | co | ⊢ ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝑢 ) ( 𝑠 ‘ 𝑥 ) ) |
| 29 | 18 20 28 | cixp | ⊢ X 𝑥 ∈ ( Base ‘ 𝑡 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝑢 ) ( 𝑠 ‘ 𝑥 ) ) |
| 30 | vy | ⊢ 𝑦 | |
| 31 | vh | ⊢ ℎ | |
| 32 | 5 24 | cfv | ⊢ ( Hom ‘ 𝑡 ) |
| 33 | 30 | cv | ⊢ 𝑦 |
| 34 | 22 33 32 | co | ⊢ ( 𝑥 ( Hom ‘ 𝑡 ) 𝑦 ) |
| 35 | 17 | cv | ⊢ 𝑎 |
| 36 | 33 35 | cfv | ⊢ ( 𝑎 ‘ 𝑦 ) |
| 37 | 33 21 | cfv | ⊢ ( 𝑟 ‘ 𝑦 ) |
| 38 | 23 37 | cop | ⊢ 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 |
| 39 | cco | ⊢ comp | |
| 40 | 7 39 | cfv | ⊢ ( comp ‘ 𝑢 ) |
| 41 | 33 26 | cfv | ⊢ ( 𝑠 ‘ 𝑦 ) |
| 42 | 38 41 40 | co | ⊢ ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) |
| 43 | c2nd | ⊢ 2nd | |
| 44 | 11 43 | cfv | ⊢ ( 2nd ‘ 𝑓 ) |
| 45 | 22 33 44 | co | ⊢ ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) |
| 46 | 31 | cv | ⊢ ℎ |
| 47 | 46 45 | cfv | ⊢ ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) |
| 48 | 36 47 42 | co | ⊢ ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) |
| 49 | 14 43 | cfv | ⊢ ( 2nd ‘ 𝑔 ) |
| 50 | 22 33 49 | co | ⊢ ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) |
| 51 | 46 50 | cfv | ⊢ ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) |
| 52 | 23 27 | cop | ⊢ 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 |
| 53 | 52 41 40 | co | ⊢ ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) |
| 54 | 22 35 | cfv | ⊢ ( 𝑎 ‘ 𝑥 ) |
| 55 | 51 54 53 | co | ⊢ ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) |
| 56 | 48 55 | wceq | ⊢ ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) |
| 57 | 56 31 34 | wral | ⊢ ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝑡 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) |
| 58 | 57 30 20 | wral | ⊢ ∀ 𝑦 ∈ ( Base ‘ 𝑡 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝑡 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) |
| 59 | 58 18 20 | wral | ⊢ ∀ 𝑥 ∈ ( Base ‘ 𝑡 ) ∀ 𝑦 ∈ ( Base ‘ 𝑡 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝑡 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) |
| 60 | 59 17 29 | crab | ⊢ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝑡 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝑢 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑡 ) ∀ 𝑦 ∈ ( Base ‘ 𝑡 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝑡 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } |
| 61 | 16 15 60 | csb | ⊢ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝑡 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝑢 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑡 ) ∀ 𝑦 ∈ ( Base ‘ 𝑡 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝑡 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } |
| 62 | 13 12 61 | csb | ⊢ ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝑡 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝑢 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑡 ) ∀ 𝑦 ∈ ( Base ‘ 𝑡 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝑡 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } |
| 63 | 4 9 8 8 62 | cmpo | ⊢ ( 𝑓 ∈ ( 𝑡 Func 𝑢 ) , 𝑔 ∈ ( 𝑡 Func 𝑢 ) ↦ ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝑡 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝑢 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑡 ) ∀ 𝑦 ∈ ( Base ‘ 𝑡 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝑡 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) |
| 64 | 1 3 2 2 63 | cmpo | ⊢ ( 𝑡 ∈ Cat , 𝑢 ∈ Cat ↦ ( 𝑓 ∈ ( 𝑡 Func 𝑢 ) , 𝑔 ∈ ( 𝑡 Func 𝑢 ) ↦ ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝑡 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝑢 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑡 ) ∀ 𝑦 ∈ ( Base ‘ 𝑡 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝑡 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) ) |
| 65 | 0 64 | wceq | ⊢ Nat = ( 𝑡 ∈ Cat , 𝑢 ∈ Cat ↦ ( 𝑓 ∈ ( 𝑡 Func 𝑢 ) , 𝑔 ∈ ( 𝑡 Func 𝑢 ) ↦ ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝑡 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝑢 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑡 ) ∀ 𝑦 ∈ ( Base ‘ 𝑡 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝑡 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) ) |