This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sufficient condition for a (nonempty) set to be a singleton. (Contributed by AV, 20-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | issn | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝑦 → ∃ 𝑧 𝐴 = { 𝑧 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equcom | ⊢ ( 𝑥 = 𝑦 ↔ 𝑦 = 𝑥 ) | |
| 2 | 1 | a1i | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝑥 = 𝑦 ↔ 𝑦 = 𝑥 ) ) |
| 3 | 2 | ralbidv | ⊢ ( 𝑥 ∈ 𝐴 → ( ∀ 𝑦 ∈ 𝐴 𝑥 = 𝑦 ↔ ∀ 𝑦 ∈ 𝐴 𝑦 = 𝑥 ) ) |
| 4 | ne0i | ⊢ ( 𝑥 ∈ 𝐴 → 𝐴 ≠ ∅ ) | |
| 5 | eqsn | ⊢ ( 𝐴 ≠ ∅ → ( 𝐴 = { 𝑥 } ↔ ∀ 𝑦 ∈ 𝐴 𝑦 = 𝑥 ) ) | |
| 6 | 4 5 | syl | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝐴 = { 𝑥 } ↔ ∀ 𝑦 ∈ 𝐴 𝑦 = 𝑥 ) ) |
| 7 | 3 6 | bitr4d | ⊢ ( 𝑥 ∈ 𝐴 → ( ∀ 𝑦 ∈ 𝐴 𝑥 = 𝑦 ↔ 𝐴 = { 𝑥 } ) ) |
| 8 | sneq | ⊢ ( 𝑧 = 𝑥 → { 𝑧 } = { 𝑥 } ) | |
| 9 | 8 | eqeq2d | ⊢ ( 𝑧 = 𝑥 → ( 𝐴 = { 𝑧 } ↔ 𝐴 = { 𝑥 } ) ) |
| 10 | 9 | spcegv | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝐴 = { 𝑥 } → ∃ 𝑧 𝐴 = { 𝑧 } ) ) |
| 11 | 7 10 | sylbid | ⊢ ( 𝑥 ∈ 𝐴 → ( ∀ 𝑦 ∈ 𝐴 𝑥 = 𝑦 → ∃ 𝑧 𝐴 = { 𝑧 } ) ) |
| 12 | 11 | rexlimiv | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝑦 → ∃ 𝑧 𝐴 = { 𝑧 } ) |