This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Possible values for a set sandwiched between another set and it plus a singleton. (Contributed by Mario Carneiro, 2-Jul-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssunpr | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐵 ∪ { 𝐶 , 𝐷 } ) ) ↔ ( ( 𝐴 = 𝐵 ∨ 𝐴 = ( 𝐵 ∪ { 𝐶 } ) ) ∨ ( 𝐴 = ( 𝐵 ∪ { 𝐷 } ) ∨ 𝐴 = ( 𝐵 ∪ { 𝐶 , 𝐷 } ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pr | ⊢ { 𝐶 , 𝐷 } = ( { 𝐶 } ∪ { 𝐷 } ) | |
| 2 | 1 | uneq2i | ⊢ ( 𝐵 ∪ { 𝐶 , 𝐷 } ) = ( 𝐵 ∪ ( { 𝐶 } ∪ { 𝐷 } ) ) |
| 3 | unass | ⊢ ( ( 𝐵 ∪ { 𝐶 } ) ∪ { 𝐷 } ) = ( 𝐵 ∪ ( { 𝐶 } ∪ { 𝐷 } ) ) | |
| 4 | 2 3 | eqtr4i | ⊢ ( 𝐵 ∪ { 𝐶 , 𝐷 } ) = ( ( 𝐵 ∪ { 𝐶 } ) ∪ { 𝐷 } ) |
| 5 | 4 | sseq2i | ⊢ ( 𝐴 ⊆ ( 𝐵 ∪ { 𝐶 , 𝐷 } ) ↔ 𝐴 ⊆ ( ( 𝐵 ∪ { 𝐶 } ) ∪ { 𝐷 } ) ) |
| 6 | 5 | anbi2i | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐵 ∪ { 𝐶 , 𝐷 } ) ) ↔ ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ ( ( 𝐵 ∪ { 𝐶 } ) ∪ { 𝐷 } ) ) ) |
| 7 | ssunsn2 | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ ( ( 𝐵 ∪ { 𝐶 } ) ∪ { 𝐷 } ) ) ↔ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐵 ∪ { 𝐶 } ) ) ∨ ( ( 𝐵 ∪ { 𝐷 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ( 𝐵 ∪ { 𝐶 } ) ∪ { 𝐷 } ) ) ) ) | |
| 8 | ssunsn | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐵 ∪ { 𝐶 } ) ) ↔ ( 𝐴 = 𝐵 ∨ 𝐴 = ( 𝐵 ∪ { 𝐶 } ) ) ) | |
| 9 | un23 | ⊢ ( ( 𝐵 ∪ { 𝐶 } ) ∪ { 𝐷 } ) = ( ( 𝐵 ∪ { 𝐷 } ) ∪ { 𝐶 } ) | |
| 10 | 9 | sseq2i | ⊢ ( 𝐴 ⊆ ( ( 𝐵 ∪ { 𝐶 } ) ∪ { 𝐷 } ) ↔ 𝐴 ⊆ ( ( 𝐵 ∪ { 𝐷 } ) ∪ { 𝐶 } ) ) |
| 11 | 10 | anbi2i | ⊢ ( ( ( 𝐵 ∪ { 𝐷 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ( 𝐵 ∪ { 𝐶 } ) ∪ { 𝐷 } ) ) ↔ ( ( 𝐵 ∪ { 𝐷 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ( 𝐵 ∪ { 𝐷 } ) ∪ { 𝐶 } ) ) ) |
| 12 | ssunsn | ⊢ ( ( ( 𝐵 ∪ { 𝐷 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ( 𝐵 ∪ { 𝐷 } ) ∪ { 𝐶 } ) ) ↔ ( 𝐴 = ( 𝐵 ∪ { 𝐷 } ) ∨ 𝐴 = ( ( 𝐵 ∪ { 𝐷 } ) ∪ { 𝐶 } ) ) ) | |
| 13 | 4 9 | eqtr2i | ⊢ ( ( 𝐵 ∪ { 𝐷 } ) ∪ { 𝐶 } ) = ( 𝐵 ∪ { 𝐶 , 𝐷 } ) |
| 14 | 13 | eqeq2i | ⊢ ( 𝐴 = ( ( 𝐵 ∪ { 𝐷 } ) ∪ { 𝐶 } ) ↔ 𝐴 = ( 𝐵 ∪ { 𝐶 , 𝐷 } ) ) |
| 15 | 14 | orbi2i | ⊢ ( ( 𝐴 = ( 𝐵 ∪ { 𝐷 } ) ∨ 𝐴 = ( ( 𝐵 ∪ { 𝐷 } ) ∪ { 𝐶 } ) ) ↔ ( 𝐴 = ( 𝐵 ∪ { 𝐷 } ) ∨ 𝐴 = ( 𝐵 ∪ { 𝐶 , 𝐷 } ) ) ) |
| 16 | 11 12 15 | 3bitri | ⊢ ( ( ( 𝐵 ∪ { 𝐷 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ( 𝐵 ∪ { 𝐶 } ) ∪ { 𝐷 } ) ) ↔ ( 𝐴 = ( 𝐵 ∪ { 𝐷 } ) ∨ 𝐴 = ( 𝐵 ∪ { 𝐶 , 𝐷 } ) ) ) |
| 17 | 8 16 | orbi12i | ⊢ ( ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐵 ∪ { 𝐶 } ) ) ∨ ( ( 𝐵 ∪ { 𝐷 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( ( 𝐵 ∪ { 𝐶 } ) ∪ { 𝐷 } ) ) ) ↔ ( ( 𝐴 = 𝐵 ∨ 𝐴 = ( 𝐵 ∪ { 𝐶 } ) ) ∨ ( 𝐴 = ( 𝐵 ∪ { 𝐷 } ) ∨ 𝐴 = ( 𝐵 ∪ { 𝐶 , 𝐷 } ) ) ) ) |
| 18 | 6 7 17 | 3bitri | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐵 ∪ { 𝐶 , 𝐷 } ) ) ↔ ( ( 𝐴 = 𝐵 ∨ 𝐴 = ( 𝐵 ∪ { 𝐶 } ) ) ∨ ( 𝐴 = ( 𝐵 ∪ { 𝐷 } ) ∨ 𝐴 = ( 𝐵 ∪ { 𝐶 , 𝐷 } ) ) ) ) |