This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition with the identity relation. Part of Theorem 3.7(i) of Monk1 p. 36. (Contributed by NM, 22-Apr-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | coi1 | ⊢ ( Rel 𝐴 → ( 𝐴 ∘ I ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relco | ⊢ Rel ( 𝐴 ∘ I ) | |
| 2 | vex | ⊢ 𝑥 ∈ V | |
| 3 | vex | ⊢ 𝑦 ∈ V | |
| 4 | 2 3 | opelco | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 ∘ I ) ↔ ∃ 𝑧 ( 𝑥 I 𝑧 ∧ 𝑧 𝐴 𝑦 ) ) |
| 5 | vex | ⊢ 𝑧 ∈ V | |
| 6 | 5 | ideq | ⊢ ( 𝑥 I 𝑧 ↔ 𝑥 = 𝑧 ) |
| 7 | equcom | ⊢ ( 𝑥 = 𝑧 ↔ 𝑧 = 𝑥 ) | |
| 8 | 6 7 | bitri | ⊢ ( 𝑥 I 𝑧 ↔ 𝑧 = 𝑥 ) |
| 9 | 8 | anbi1i | ⊢ ( ( 𝑥 I 𝑧 ∧ 𝑧 𝐴 𝑦 ) ↔ ( 𝑧 = 𝑥 ∧ 𝑧 𝐴 𝑦 ) ) |
| 10 | 9 | exbii | ⊢ ( ∃ 𝑧 ( 𝑥 I 𝑧 ∧ 𝑧 𝐴 𝑦 ) ↔ ∃ 𝑧 ( 𝑧 = 𝑥 ∧ 𝑧 𝐴 𝑦 ) ) |
| 11 | breq1 | ⊢ ( 𝑧 = 𝑥 → ( 𝑧 𝐴 𝑦 ↔ 𝑥 𝐴 𝑦 ) ) | |
| 12 | 11 | equsexvw | ⊢ ( ∃ 𝑧 ( 𝑧 = 𝑥 ∧ 𝑧 𝐴 𝑦 ) ↔ 𝑥 𝐴 𝑦 ) |
| 13 | 10 12 | bitri | ⊢ ( ∃ 𝑧 ( 𝑥 I 𝑧 ∧ 𝑧 𝐴 𝑦 ) ↔ 𝑥 𝐴 𝑦 ) |
| 14 | 4 13 | bitri | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 ∘ I ) ↔ 𝑥 𝐴 𝑦 ) |
| 15 | df-br | ⊢ ( 𝑥 𝐴 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ) | |
| 16 | 14 15 | bitri | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 ∘ I ) ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ) |
| 17 | 16 | eqrelriv | ⊢ ( ( Rel ( 𝐴 ∘ I ) ∧ Rel 𝐴 ) → ( 𝐴 ∘ I ) = 𝐴 ) |
| 18 | 1 17 | mpan | ⊢ ( Rel 𝐴 → ( 𝐴 ∘ I ) = 𝐴 ) |