This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Functionality of the group multiple operation. (Contributed by Mario Carneiro, 21-Mar-2015) (Revised by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulgfn.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| mulgfn.t | ⊢ · = ( .g ‘ 𝐺 ) | ||
| Assertion | mulgfn | ⊢ · Fn ( ℤ × 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgfn.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | mulgfn.t | ⊢ · = ( .g ‘ 𝐺 ) | |
| 3 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 4 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 5 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 6 | 1 3 4 5 2 | mulgfval | ⊢ · = ( 𝑛 ∈ ℤ , 𝑥 ∈ 𝐵 ↦ if ( 𝑛 = 0 , ( 0g ‘ 𝐺 ) , if ( 0 < 𝑛 , ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( ( invg ‘ 𝐺 ) ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) |
| 7 | fvex | ⊢ ( 0g ‘ 𝐺 ) ∈ V | |
| 8 | fvex | ⊢ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) ∈ V | |
| 9 | fvex | ⊢ ( ( invg ‘ 𝐺 ) ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ∈ V | |
| 10 | 8 9 | ifex | ⊢ if ( 0 < 𝑛 , ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( ( invg ‘ 𝐺 ) ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ∈ V |
| 11 | 7 10 | ifex | ⊢ if ( 𝑛 = 0 , ( 0g ‘ 𝐺 ) , if ( 0 < 𝑛 , ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( ( invg ‘ 𝐺 ) ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ∈ V |
| 12 | 6 11 | fnmpoi | ⊢ · Fn ( ℤ × 𝐵 ) |