This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma used in lemma showing compatibility of multiplication. (Contributed by NM, 4-Sep-1995) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mulcmpblnrlem | ⊢ ( ( ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) ∧ ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) ) → ( ( 𝐷 ·P 𝐹 ) +P ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐵 ·P 𝐺 ) ) +P ( ( 𝐶 ·P 𝑆 ) +P ( 𝐷 ·P 𝑅 ) ) ) ) = ( ( 𝐷 ·P 𝐹 ) +P ( ( ( 𝐴 ·P 𝐺 ) +P ( 𝐵 ·P 𝐹 ) ) +P ( ( 𝐶 ·P 𝑅 ) +P ( 𝐷 ·P 𝑆 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | ⊢ ( ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) → ( ( 𝐴 +P 𝐷 ) ·P 𝐹 ) = ( ( 𝐵 +P 𝐶 ) ·P 𝐹 ) ) | |
| 2 | distrpr | ⊢ ( 𝐹 ·P ( 𝐴 +P 𝐷 ) ) = ( ( 𝐹 ·P 𝐴 ) +P ( 𝐹 ·P 𝐷 ) ) | |
| 3 | mulcompr | ⊢ ( ( 𝐴 +P 𝐷 ) ·P 𝐹 ) = ( 𝐹 ·P ( 𝐴 +P 𝐷 ) ) | |
| 4 | mulcompr | ⊢ ( 𝐴 ·P 𝐹 ) = ( 𝐹 ·P 𝐴 ) | |
| 5 | mulcompr | ⊢ ( 𝐷 ·P 𝐹 ) = ( 𝐹 ·P 𝐷 ) | |
| 6 | 4 5 | oveq12i | ⊢ ( ( 𝐴 ·P 𝐹 ) +P ( 𝐷 ·P 𝐹 ) ) = ( ( 𝐹 ·P 𝐴 ) +P ( 𝐹 ·P 𝐷 ) ) |
| 7 | 2 3 6 | 3eqtr4i | ⊢ ( ( 𝐴 +P 𝐷 ) ·P 𝐹 ) = ( ( 𝐴 ·P 𝐹 ) +P ( 𝐷 ·P 𝐹 ) ) |
| 8 | distrpr | ⊢ ( 𝐹 ·P ( 𝐵 +P 𝐶 ) ) = ( ( 𝐹 ·P 𝐵 ) +P ( 𝐹 ·P 𝐶 ) ) | |
| 9 | mulcompr | ⊢ ( ( 𝐵 +P 𝐶 ) ·P 𝐹 ) = ( 𝐹 ·P ( 𝐵 +P 𝐶 ) ) | |
| 10 | mulcompr | ⊢ ( 𝐵 ·P 𝐹 ) = ( 𝐹 ·P 𝐵 ) | |
| 11 | mulcompr | ⊢ ( 𝐶 ·P 𝐹 ) = ( 𝐹 ·P 𝐶 ) | |
| 12 | 10 11 | oveq12i | ⊢ ( ( 𝐵 ·P 𝐹 ) +P ( 𝐶 ·P 𝐹 ) ) = ( ( 𝐹 ·P 𝐵 ) +P ( 𝐹 ·P 𝐶 ) ) |
| 13 | 8 9 12 | 3eqtr4i | ⊢ ( ( 𝐵 +P 𝐶 ) ·P 𝐹 ) = ( ( 𝐵 ·P 𝐹 ) +P ( 𝐶 ·P 𝐹 ) ) |
| 14 | 1 7 13 | 3eqtr3g | ⊢ ( ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) → ( ( 𝐴 ·P 𝐹 ) +P ( 𝐷 ·P 𝐹 ) ) = ( ( 𝐵 ·P 𝐹 ) +P ( 𝐶 ·P 𝐹 ) ) ) |
| 15 | 14 | oveq1d | ⊢ ( ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) → ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐷 ·P 𝐹 ) ) +P ( 𝐶 ·P 𝑆 ) ) = ( ( ( 𝐵 ·P 𝐹 ) +P ( 𝐶 ·P 𝐹 ) ) +P ( 𝐶 ·P 𝑆 ) ) ) |
| 16 | addasspr | ⊢ ( ( ( 𝐵 ·P 𝐹 ) +P ( 𝐶 ·P 𝐹 ) ) +P ( 𝐶 ·P 𝑆 ) ) = ( ( 𝐵 ·P 𝐹 ) +P ( ( 𝐶 ·P 𝐹 ) +P ( 𝐶 ·P 𝑆 ) ) ) | |
| 17 | oveq2 | ⊢ ( ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) → ( 𝐶 ·P ( 𝐹 +P 𝑆 ) ) = ( 𝐶 ·P ( 𝐺 +P 𝑅 ) ) ) | |
| 18 | distrpr | ⊢ ( 𝐶 ·P ( 𝐹 +P 𝑆 ) ) = ( ( 𝐶 ·P 𝐹 ) +P ( 𝐶 ·P 𝑆 ) ) | |
| 19 | distrpr | ⊢ ( 𝐶 ·P ( 𝐺 +P 𝑅 ) ) = ( ( 𝐶 ·P 𝐺 ) +P ( 𝐶 ·P 𝑅 ) ) | |
| 20 | 17 18 19 | 3eqtr3g | ⊢ ( ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) → ( ( 𝐶 ·P 𝐹 ) +P ( 𝐶 ·P 𝑆 ) ) = ( ( 𝐶 ·P 𝐺 ) +P ( 𝐶 ·P 𝑅 ) ) ) |
| 21 | 20 | oveq2d | ⊢ ( ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) → ( ( 𝐵 ·P 𝐹 ) +P ( ( 𝐶 ·P 𝐹 ) +P ( 𝐶 ·P 𝑆 ) ) ) = ( ( 𝐵 ·P 𝐹 ) +P ( ( 𝐶 ·P 𝐺 ) +P ( 𝐶 ·P 𝑅 ) ) ) ) |
| 22 | 16 21 | eqtrid | ⊢ ( ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) → ( ( ( 𝐵 ·P 𝐹 ) +P ( 𝐶 ·P 𝐹 ) ) +P ( 𝐶 ·P 𝑆 ) ) = ( ( 𝐵 ·P 𝐹 ) +P ( ( 𝐶 ·P 𝐺 ) +P ( 𝐶 ·P 𝑅 ) ) ) ) |
| 23 | 15 22 | sylan9eq | ⊢ ( ( ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) ∧ ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) ) → ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐷 ·P 𝐹 ) ) +P ( 𝐶 ·P 𝑆 ) ) = ( ( 𝐵 ·P 𝐹 ) +P ( ( 𝐶 ·P 𝐺 ) +P ( 𝐶 ·P 𝑅 ) ) ) ) |
| 24 | ovex | ⊢ ( 𝐴 ·P 𝐹 ) ∈ V | |
| 25 | ovex | ⊢ ( 𝐷 ·P 𝐹 ) ∈ V | |
| 26 | ovex | ⊢ ( 𝐶 ·P 𝑆 ) ∈ V | |
| 27 | addcompr | ⊢ ( 𝑥 +P 𝑦 ) = ( 𝑦 +P 𝑥 ) | |
| 28 | addasspr | ⊢ ( ( 𝑥 +P 𝑦 ) +P 𝑧 ) = ( 𝑥 +P ( 𝑦 +P 𝑧 ) ) | |
| 29 | 24 25 26 27 28 | caov32 | ⊢ ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐷 ·P 𝐹 ) ) +P ( 𝐶 ·P 𝑆 ) ) = ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐶 ·P 𝑆 ) ) +P ( 𝐷 ·P 𝐹 ) ) |
| 30 | ovex | ⊢ ( 𝐵 ·P 𝐹 ) ∈ V | |
| 31 | ovex | ⊢ ( 𝐶 ·P 𝐺 ) ∈ V | |
| 32 | ovex | ⊢ ( 𝐶 ·P 𝑅 ) ∈ V | |
| 33 | 30 31 32 27 28 | caov12 | ⊢ ( ( 𝐵 ·P 𝐹 ) +P ( ( 𝐶 ·P 𝐺 ) +P ( 𝐶 ·P 𝑅 ) ) ) = ( ( 𝐶 ·P 𝐺 ) +P ( ( 𝐵 ·P 𝐹 ) +P ( 𝐶 ·P 𝑅 ) ) ) |
| 34 | 23 29 33 | 3eqtr3g | ⊢ ( ( ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) ∧ ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) ) → ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐶 ·P 𝑆 ) ) +P ( 𝐷 ·P 𝐹 ) ) = ( ( 𝐶 ·P 𝐺 ) +P ( ( 𝐵 ·P 𝐹 ) +P ( 𝐶 ·P 𝑅 ) ) ) ) |
| 35 | 34 | oveq2d | ⊢ ( ( ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) ∧ ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) ) → ( ( ( 𝐵 ·P 𝐺 ) +P ( 𝐷 ·P 𝑅 ) ) +P ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐶 ·P 𝑆 ) ) +P ( 𝐷 ·P 𝐹 ) ) ) = ( ( ( 𝐵 ·P 𝐺 ) +P ( 𝐷 ·P 𝑅 ) ) +P ( ( 𝐶 ·P 𝐺 ) +P ( ( 𝐵 ·P 𝐹 ) +P ( 𝐶 ·P 𝑅 ) ) ) ) ) |
| 36 | oveq2 | ⊢ ( ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) → ( 𝐷 ·P ( 𝐹 +P 𝑆 ) ) = ( 𝐷 ·P ( 𝐺 +P 𝑅 ) ) ) | |
| 37 | distrpr | ⊢ ( 𝐷 ·P ( 𝐹 +P 𝑆 ) ) = ( ( 𝐷 ·P 𝐹 ) +P ( 𝐷 ·P 𝑆 ) ) | |
| 38 | distrpr | ⊢ ( 𝐷 ·P ( 𝐺 +P 𝑅 ) ) = ( ( 𝐷 ·P 𝐺 ) +P ( 𝐷 ·P 𝑅 ) ) | |
| 39 | 36 37 38 | 3eqtr3g | ⊢ ( ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) → ( ( 𝐷 ·P 𝐹 ) +P ( 𝐷 ·P 𝑆 ) ) = ( ( 𝐷 ·P 𝐺 ) +P ( 𝐷 ·P 𝑅 ) ) ) |
| 40 | 39 | oveq2d | ⊢ ( ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) → ( ( 𝐴 ·P 𝐺 ) +P ( ( 𝐷 ·P 𝐹 ) +P ( 𝐷 ·P 𝑆 ) ) ) = ( ( 𝐴 ·P 𝐺 ) +P ( ( 𝐷 ·P 𝐺 ) +P ( 𝐷 ·P 𝑅 ) ) ) ) |
| 41 | addasspr | ⊢ ( ( ( 𝐴 ·P 𝐺 ) +P ( 𝐷 ·P 𝐺 ) ) +P ( 𝐷 ·P 𝑅 ) ) = ( ( 𝐴 ·P 𝐺 ) +P ( ( 𝐷 ·P 𝐺 ) +P ( 𝐷 ·P 𝑅 ) ) ) | |
| 42 | 40 41 | eqtr4di | ⊢ ( ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) → ( ( 𝐴 ·P 𝐺 ) +P ( ( 𝐷 ·P 𝐹 ) +P ( 𝐷 ·P 𝑆 ) ) ) = ( ( ( 𝐴 ·P 𝐺 ) +P ( 𝐷 ·P 𝐺 ) ) +P ( 𝐷 ·P 𝑅 ) ) ) |
| 43 | oveq1 | ⊢ ( ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) → ( ( 𝐴 +P 𝐷 ) ·P 𝐺 ) = ( ( 𝐵 +P 𝐶 ) ·P 𝐺 ) ) | |
| 44 | distrpr | ⊢ ( 𝐺 ·P ( 𝐴 +P 𝐷 ) ) = ( ( 𝐺 ·P 𝐴 ) +P ( 𝐺 ·P 𝐷 ) ) | |
| 45 | mulcompr | ⊢ ( ( 𝐴 +P 𝐷 ) ·P 𝐺 ) = ( 𝐺 ·P ( 𝐴 +P 𝐷 ) ) | |
| 46 | mulcompr | ⊢ ( 𝐴 ·P 𝐺 ) = ( 𝐺 ·P 𝐴 ) | |
| 47 | mulcompr | ⊢ ( 𝐷 ·P 𝐺 ) = ( 𝐺 ·P 𝐷 ) | |
| 48 | 46 47 | oveq12i | ⊢ ( ( 𝐴 ·P 𝐺 ) +P ( 𝐷 ·P 𝐺 ) ) = ( ( 𝐺 ·P 𝐴 ) +P ( 𝐺 ·P 𝐷 ) ) |
| 49 | 44 45 48 | 3eqtr4i | ⊢ ( ( 𝐴 +P 𝐷 ) ·P 𝐺 ) = ( ( 𝐴 ·P 𝐺 ) +P ( 𝐷 ·P 𝐺 ) ) |
| 50 | distrpr | ⊢ ( 𝐺 ·P ( 𝐵 +P 𝐶 ) ) = ( ( 𝐺 ·P 𝐵 ) +P ( 𝐺 ·P 𝐶 ) ) | |
| 51 | mulcompr | ⊢ ( ( 𝐵 +P 𝐶 ) ·P 𝐺 ) = ( 𝐺 ·P ( 𝐵 +P 𝐶 ) ) | |
| 52 | mulcompr | ⊢ ( 𝐵 ·P 𝐺 ) = ( 𝐺 ·P 𝐵 ) | |
| 53 | mulcompr | ⊢ ( 𝐶 ·P 𝐺 ) = ( 𝐺 ·P 𝐶 ) | |
| 54 | 52 53 | oveq12i | ⊢ ( ( 𝐵 ·P 𝐺 ) +P ( 𝐶 ·P 𝐺 ) ) = ( ( 𝐺 ·P 𝐵 ) +P ( 𝐺 ·P 𝐶 ) ) |
| 55 | 50 51 54 | 3eqtr4i | ⊢ ( ( 𝐵 +P 𝐶 ) ·P 𝐺 ) = ( ( 𝐵 ·P 𝐺 ) +P ( 𝐶 ·P 𝐺 ) ) |
| 56 | 43 49 55 | 3eqtr3g | ⊢ ( ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) → ( ( 𝐴 ·P 𝐺 ) +P ( 𝐷 ·P 𝐺 ) ) = ( ( 𝐵 ·P 𝐺 ) +P ( 𝐶 ·P 𝐺 ) ) ) |
| 57 | 56 | oveq1d | ⊢ ( ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) → ( ( ( 𝐴 ·P 𝐺 ) +P ( 𝐷 ·P 𝐺 ) ) +P ( 𝐷 ·P 𝑅 ) ) = ( ( ( 𝐵 ·P 𝐺 ) +P ( 𝐶 ·P 𝐺 ) ) +P ( 𝐷 ·P 𝑅 ) ) ) |
| 58 | 42 57 | sylan9eqr | ⊢ ( ( ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) ∧ ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) ) → ( ( 𝐴 ·P 𝐺 ) +P ( ( 𝐷 ·P 𝐹 ) +P ( 𝐷 ·P 𝑆 ) ) ) = ( ( ( 𝐵 ·P 𝐺 ) +P ( 𝐶 ·P 𝐺 ) ) +P ( 𝐷 ·P 𝑅 ) ) ) |
| 59 | ovex | ⊢ ( 𝐴 ·P 𝐺 ) ∈ V | |
| 60 | ovex | ⊢ ( 𝐷 ·P 𝑆 ) ∈ V | |
| 61 | 59 25 60 27 28 | caov12 | ⊢ ( ( 𝐴 ·P 𝐺 ) +P ( ( 𝐷 ·P 𝐹 ) +P ( 𝐷 ·P 𝑆 ) ) ) = ( ( 𝐷 ·P 𝐹 ) +P ( ( 𝐴 ·P 𝐺 ) +P ( 𝐷 ·P 𝑆 ) ) ) |
| 62 | ovex | ⊢ ( 𝐵 ·P 𝐺 ) ∈ V | |
| 63 | ovex | ⊢ ( 𝐷 ·P 𝑅 ) ∈ V | |
| 64 | 62 31 63 27 28 | caov32 | ⊢ ( ( ( 𝐵 ·P 𝐺 ) +P ( 𝐶 ·P 𝐺 ) ) +P ( 𝐷 ·P 𝑅 ) ) = ( ( ( 𝐵 ·P 𝐺 ) +P ( 𝐷 ·P 𝑅 ) ) +P ( 𝐶 ·P 𝐺 ) ) |
| 65 | 58 61 64 | 3eqtr3g | ⊢ ( ( ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) ∧ ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) ) → ( ( 𝐷 ·P 𝐹 ) +P ( ( 𝐴 ·P 𝐺 ) +P ( 𝐷 ·P 𝑆 ) ) ) = ( ( ( 𝐵 ·P 𝐺 ) +P ( 𝐷 ·P 𝑅 ) ) +P ( 𝐶 ·P 𝐺 ) ) ) |
| 66 | 65 | oveq1d | ⊢ ( ( ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) ∧ ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) ) → ( ( ( 𝐷 ·P 𝐹 ) +P ( ( 𝐴 ·P 𝐺 ) +P ( 𝐷 ·P 𝑆 ) ) ) +P ( ( 𝐵 ·P 𝐹 ) +P ( 𝐶 ·P 𝑅 ) ) ) = ( ( ( ( 𝐵 ·P 𝐺 ) +P ( 𝐷 ·P 𝑅 ) ) +P ( 𝐶 ·P 𝐺 ) ) +P ( ( 𝐵 ·P 𝐹 ) +P ( 𝐶 ·P 𝑅 ) ) ) ) |
| 67 | addasspr | ⊢ ( ( ( ( 𝐵 ·P 𝐺 ) +P ( 𝐷 ·P 𝑅 ) ) +P ( 𝐶 ·P 𝐺 ) ) +P ( ( 𝐵 ·P 𝐹 ) +P ( 𝐶 ·P 𝑅 ) ) ) = ( ( ( 𝐵 ·P 𝐺 ) +P ( 𝐷 ·P 𝑅 ) ) +P ( ( 𝐶 ·P 𝐺 ) +P ( ( 𝐵 ·P 𝐹 ) +P ( 𝐶 ·P 𝑅 ) ) ) ) | |
| 68 | 66 67 | eqtrdi | ⊢ ( ( ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) ∧ ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) ) → ( ( ( 𝐷 ·P 𝐹 ) +P ( ( 𝐴 ·P 𝐺 ) +P ( 𝐷 ·P 𝑆 ) ) ) +P ( ( 𝐵 ·P 𝐹 ) +P ( 𝐶 ·P 𝑅 ) ) ) = ( ( ( 𝐵 ·P 𝐺 ) +P ( 𝐷 ·P 𝑅 ) ) +P ( ( 𝐶 ·P 𝐺 ) +P ( ( 𝐵 ·P 𝐹 ) +P ( 𝐶 ·P 𝑅 ) ) ) ) ) |
| 69 | 35 68 | eqtr4d | ⊢ ( ( ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) ∧ ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) ) → ( ( ( 𝐵 ·P 𝐺 ) +P ( 𝐷 ·P 𝑅 ) ) +P ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐶 ·P 𝑆 ) ) +P ( 𝐷 ·P 𝐹 ) ) ) = ( ( ( 𝐷 ·P 𝐹 ) +P ( ( 𝐴 ·P 𝐺 ) +P ( 𝐷 ·P 𝑆 ) ) ) +P ( ( 𝐵 ·P 𝐹 ) +P ( 𝐶 ·P 𝑅 ) ) ) ) |
| 70 | ovex | ⊢ ( ( 𝐵 ·P 𝐺 ) +P ( 𝐷 ·P 𝑅 ) ) ∈ V | |
| 71 | ovex | ⊢ ( ( 𝐴 ·P 𝐹 ) +P ( 𝐶 ·P 𝑆 ) ) ∈ V | |
| 72 | 70 71 25 27 28 | caov13 | ⊢ ( ( ( 𝐵 ·P 𝐺 ) +P ( 𝐷 ·P 𝑅 ) ) +P ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐶 ·P 𝑆 ) ) +P ( 𝐷 ·P 𝐹 ) ) ) = ( ( 𝐷 ·P 𝐹 ) +P ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐶 ·P 𝑆 ) ) +P ( ( 𝐵 ·P 𝐺 ) +P ( 𝐷 ·P 𝑅 ) ) ) ) |
| 73 | addasspr | ⊢ ( ( ( 𝐷 ·P 𝐹 ) +P ( ( 𝐴 ·P 𝐺 ) +P ( 𝐷 ·P 𝑆 ) ) ) +P ( ( 𝐵 ·P 𝐹 ) +P ( 𝐶 ·P 𝑅 ) ) ) = ( ( 𝐷 ·P 𝐹 ) +P ( ( ( 𝐴 ·P 𝐺 ) +P ( 𝐷 ·P 𝑆 ) ) +P ( ( 𝐵 ·P 𝐹 ) +P ( 𝐶 ·P 𝑅 ) ) ) ) | |
| 74 | 69 72 73 | 3eqtr3g | ⊢ ( ( ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) ∧ ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) ) → ( ( 𝐷 ·P 𝐹 ) +P ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐶 ·P 𝑆 ) ) +P ( ( 𝐵 ·P 𝐺 ) +P ( 𝐷 ·P 𝑅 ) ) ) ) = ( ( 𝐷 ·P 𝐹 ) +P ( ( ( 𝐴 ·P 𝐺 ) +P ( 𝐷 ·P 𝑆 ) ) +P ( ( 𝐵 ·P 𝐹 ) +P ( 𝐶 ·P 𝑅 ) ) ) ) ) |
| 75 | 24 26 62 27 28 63 | caov4 | ⊢ ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐶 ·P 𝑆 ) ) +P ( ( 𝐵 ·P 𝐺 ) +P ( 𝐷 ·P 𝑅 ) ) ) = ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐵 ·P 𝐺 ) ) +P ( ( 𝐶 ·P 𝑆 ) +P ( 𝐷 ·P 𝑅 ) ) ) |
| 76 | 75 | oveq2i | ⊢ ( ( 𝐷 ·P 𝐹 ) +P ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐶 ·P 𝑆 ) ) +P ( ( 𝐵 ·P 𝐺 ) +P ( 𝐷 ·P 𝑅 ) ) ) ) = ( ( 𝐷 ·P 𝐹 ) +P ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐵 ·P 𝐺 ) ) +P ( ( 𝐶 ·P 𝑆 ) +P ( 𝐷 ·P 𝑅 ) ) ) ) |
| 77 | 59 60 30 27 28 32 | caov42 | ⊢ ( ( ( 𝐴 ·P 𝐺 ) +P ( 𝐷 ·P 𝑆 ) ) +P ( ( 𝐵 ·P 𝐹 ) +P ( 𝐶 ·P 𝑅 ) ) ) = ( ( ( 𝐴 ·P 𝐺 ) +P ( 𝐵 ·P 𝐹 ) ) +P ( ( 𝐶 ·P 𝑅 ) +P ( 𝐷 ·P 𝑆 ) ) ) |
| 78 | 77 | oveq2i | ⊢ ( ( 𝐷 ·P 𝐹 ) +P ( ( ( 𝐴 ·P 𝐺 ) +P ( 𝐷 ·P 𝑆 ) ) +P ( ( 𝐵 ·P 𝐹 ) +P ( 𝐶 ·P 𝑅 ) ) ) ) = ( ( 𝐷 ·P 𝐹 ) +P ( ( ( 𝐴 ·P 𝐺 ) +P ( 𝐵 ·P 𝐹 ) ) +P ( ( 𝐶 ·P 𝑅 ) +P ( 𝐷 ·P 𝑆 ) ) ) ) |
| 79 | 74 76 78 | 3eqtr3g | ⊢ ( ( ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) ∧ ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) ) → ( ( 𝐷 ·P 𝐹 ) +P ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐵 ·P 𝐺 ) ) +P ( ( 𝐶 ·P 𝑆 ) +P ( 𝐷 ·P 𝑅 ) ) ) ) = ( ( 𝐷 ·P 𝐹 ) +P ( ( ( 𝐴 ·P 𝐺 ) +P ( 𝐵 ·P 𝐹 ) ) +P ( ( 𝐶 ·P 𝑅 ) +P ( 𝐷 ·P 𝑆 ) ) ) ) ) |