This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma used in lemma showing compatibility of multiplication. (Contributed by NM, 4-Sep-1995) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mulcmpblnrlem | |- ( ( ( A +P. D ) = ( B +P. C ) /\ ( F +P. S ) = ( G +P. R ) ) -> ( ( D .P. F ) +P. ( ( ( A .P. F ) +P. ( B .P. G ) ) +P. ( ( C .P. S ) +P. ( D .P. R ) ) ) ) = ( ( D .P. F ) +P. ( ( ( A .P. G ) +P. ( B .P. F ) ) +P. ( ( C .P. R ) +P. ( D .P. S ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | |- ( ( A +P. D ) = ( B +P. C ) -> ( ( A +P. D ) .P. F ) = ( ( B +P. C ) .P. F ) ) |
|
| 2 | distrpr | |- ( F .P. ( A +P. D ) ) = ( ( F .P. A ) +P. ( F .P. D ) ) |
|
| 3 | mulcompr | |- ( ( A +P. D ) .P. F ) = ( F .P. ( A +P. D ) ) |
|
| 4 | mulcompr | |- ( A .P. F ) = ( F .P. A ) |
|
| 5 | mulcompr | |- ( D .P. F ) = ( F .P. D ) |
|
| 6 | 4 5 | oveq12i | |- ( ( A .P. F ) +P. ( D .P. F ) ) = ( ( F .P. A ) +P. ( F .P. D ) ) |
| 7 | 2 3 6 | 3eqtr4i | |- ( ( A +P. D ) .P. F ) = ( ( A .P. F ) +P. ( D .P. F ) ) |
| 8 | distrpr | |- ( F .P. ( B +P. C ) ) = ( ( F .P. B ) +P. ( F .P. C ) ) |
|
| 9 | mulcompr | |- ( ( B +P. C ) .P. F ) = ( F .P. ( B +P. C ) ) |
|
| 10 | mulcompr | |- ( B .P. F ) = ( F .P. B ) |
|
| 11 | mulcompr | |- ( C .P. F ) = ( F .P. C ) |
|
| 12 | 10 11 | oveq12i | |- ( ( B .P. F ) +P. ( C .P. F ) ) = ( ( F .P. B ) +P. ( F .P. C ) ) |
| 13 | 8 9 12 | 3eqtr4i | |- ( ( B +P. C ) .P. F ) = ( ( B .P. F ) +P. ( C .P. F ) ) |
| 14 | 1 7 13 | 3eqtr3g | |- ( ( A +P. D ) = ( B +P. C ) -> ( ( A .P. F ) +P. ( D .P. F ) ) = ( ( B .P. F ) +P. ( C .P. F ) ) ) |
| 15 | 14 | oveq1d | |- ( ( A +P. D ) = ( B +P. C ) -> ( ( ( A .P. F ) +P. ( D .P. F ) ) +P. ( C .P. S ) ) = ( ( ( B .P. F ) +P. ( C .P. F ) ) +P. ( C .P. S ) ) ) |
| 16 | addasspr | |- ( ( ( B .P. F ) +P. ( C .P. F ) ) +P. ( C .P. S ) ) = ( ( B .P. F ) +P. ( ( C .P. F ) +P. ( C .P. S ) ) ) |
|
| 17 | oveq2 | |- ( ( F +P. S ) = ( G +P. R ) -> ( C .P. ( F +P. S ) ) = ( C .P. ( G +P. R ) ) ) |
|
| 18 | distrpr | |- ( C .P. ( F +P. S ) ) = ( ( C .P. F ) +P. ( C .P. S ) ) |
|
| 19 | distrpr | |- ( C .P. ( G +P. R ) ) = ( ( C .P. G ) +P. ( C .P. R ) ) |
|
| 20 | 17 18 19 | 3eqtr3g | |- ( ( F +P. S ) = ( G +P. R ) -> ( ( C .P. F ) +P. ( C .P. S ) ) = ( ( C .P. G ) +P. ( C .P. R ) ) ) |
| 21 | 20 | oveq2d | |- ( ( F +P. S ) = ( G +P. R ) -> ( ( B .P. F ) +P. ( ( C .P. F ) +P. ( C .P. S ) ) ) = ( ( B .P. F ) +P. ( ( C .P. G ) +P. ( C .P. R ) ) ) ) |
| 22 | 16 21 | eqtrid | |- ( ( F +P. S ) = ( G +P. R ) -> ( ( ( B .P. F ) +P. ( C .P. F ) ) +P. ( C .P. S ) ) = ( ( B .P. F ) +P. ( ( C .P. G ) +P. ( C .P. R ) ) ) ) |
| 23 | 15 22 | sylan9eq | |- ( ( ( A +P. D ) = ( B +P. C ) /\ ( F +P. S ) = ( G +P. R ) ) -> ( ( ( A .P. F ) +P. ( D .P. F ) ) +P. ( C .P. S ) ) = ( ( B .P. F ) +P. ( ( C .P. G ) +P. ( C .P. R ) ) ) ) |
| 24 | ovex | |- ( A .P. F ) e. _V |
|
| 25 | ovex | |- ( D .P. F ) e. _V |
|
| 26 | ovex | |- ( C .P. S ) e. _V |
|
| 27 | addcompr | |- ( x +P. y ) = ( y +P. x ) |
|
| 28 | addasspr | |- ( ( x +P. y ) +P. z ) = ( x +P. ( y +P. z ) ) |
|
| 29 | 24 25 26 27 28 | caov32 | |- ( ( ( A .P. F ) +P. ( D .P. F ) ) +P. ( C .P. S ) ) = ( ( ( A .P. F ) +P. ( C .P. S ) ) +P. ( D .P. F ) ) |
| 30 | ovex | |- ( B .P. F ) e. _V |
|
| 31 | ovex | |- ( C .P. G ) e. _V |
|
| 32 | ovex | |- ( C .P. R ) e. _V |
|
| 33 | 30 31 32 27 28 | caov12 | |- ( ( B .P. F ) +P. ( ( C .P. G ) +P. ( C .P. R ) ) ) = ( ( C .P. G ) +P. ( ( B .P. F ) +P. ( C .P. R ) ) ) |
| 34 | 23 29 33 | 3eqtr3g | |- ( ( ( A +P. D ) = ( B +P. C ) /\ ( F +P. S ) = ( G +P. R ) ) -> ( ( ( A .P. F ) +P. ( C .P. S ) ) +P. ( D .P. F ) ) = ( ( C .P. G ) +P. ( ( B .P. F ) +P. ( C .P. R ) ) ) ) |
| 35 | 34 | oveq2d | |- ( ( ( A +P. D ) = ( B +P. C ) /\ ( F +P. S ) = ( G +P. R ) ) -> ( ( ( B .P. G ) +P. ( D .P. R ) ) +P. ( ( ( A .P. F ) +P. ( C .P. S ) ) +P. ( D .P. F ) ) ) = ( ( ( B .P. G ) +P. ( D .P. R ) ) +P. ( ( C .P. G ) +P. ( ( B .P. F ) +P. ( C .P. R ) ) ) ) ) |
| 36 | oveq2 | |- ( ( F +P. S ) = ( G +P. R ) -> ( D .P. ( F +P. S ) ) = ( D .P. ( G +P. R ) ) ) |
|
| 37 | distrpr | |- ( D .P. ( F +P. S ) ) = ( ( D .P. F ) +P. ( D .P. S ) ) |
|
| 38 | distrpr | |- ( D .P. ( G +P. R ) ) = ( ( D .P. G ) +P. ( D .P. R ) ) |
|
| 39 | 36 37 38 | 3eqtr3g | |- ( ( F +P. S ) = ( G +P. R ) -> ( ( D .P. F ) +P. ( D .P. S ) ) = ( ( D .P. G ) +P. ( D .P. R ) ) ) |
| 40 | 39 | oveq2d | |- ( ( F +P. S ) = ( G +P. R ) -> ( ( A .P. G ) +P. ( ( D .P. F ) +P. ( D .P. S ) ) ) = ( ( A .P. G ) +P. ( ( D .P. G ) +P. ( D .P. R ) ) ) ) |
| 41 | addasspr | |- ( ( ( A .P. G ) +P. ( D .P. G ) ) +P. ( D .P. R ) ) = ( ( A .P. G ) +P. ( ( D .P. G ) +P. ( D .P. R ) ) ) |
|
| 42 | 40 41 | eqtr4di | |- ( ( F +P. S ) = ( G +P. R ) -> ( ( A .P. G ) +P. ( ( D .P. F ) +P. ( D .P. S ) ) ) = ( ( ( A .P. G ) +P. ( D .P. G ) ) +P. ( D .P. R ) ) ) |
| 43 | oveq1 | |- ( ( A +P. D ) = ( B +P. C ) -> ( ( A +P. D ) .P. G ) = ( ( B +P. C ) .P. G ) ) |
|
| 44 | distrpr | |- ( G .P. ( A +P. D ) ) = ( ( G .P. A ) +P. ( G .P. D ) ) |
|
| 45 | mulcompr | |- ( ( A +P. D ) .P. G ) = ( G .P. ( A +P. D ) ) |
|
| 46 | mulcompr | |- ( A .P. G ) = ( G .P. A ) |
|
| 47 | mulcompr | |- ( D .P. G ) = ( G .P. D ) |
|
| 48 | 46 47 | oveq12i | |- ( ( A .P. G ) +P. ( D .P. G ) ) = ( ( G .P. A ) +P. ( G .P. D ) ) |
| 49 | 44 45 48 | 3eqtr4i | |- ( ( A +P. D ) .P. G ) = ( ( A .P. G ) +P. ( D .P. G ) ) |
| 50 | distrpr | |- ( G .P. ( B +P. C ) ) = ( ( G .P. B ) +P. ( G .P. C ) ) |
|
| 51 | mulcompr | |- ( ( B +P. C ) .P. G ) = ( G .P. ( B +P. C ) ) |
|
| 52 | mulcompr | |- ( B .P. G ) = ( G .P. B ) |
|
| 53 | mulcompr | |- ( C .P. G ) = ( G .P. C ) |
|
| 54 | 52 53 | oveq12i | |- ( ( B .P. G ) +P. ( C .P. G ) ) = ( ( G .P. B ) +P. ( G .P. C ) ) |
| 55 | 50 51 54 | 3eqtr4i | |- ( ( B +P. C ) .P. G ) = ( ( B .P. G ) +P. ( C .P. G ) ) |
| 56 | 43 49 55 | 3eqtr3g | |- ( ( A +P. D ) = ( B +P. C ) -> ( ( A .P. G ) +P. ( D .P. G ) ) = ( ( B .P. G ) +P. ( C .P. G ) ) ) |
| 57 | 56 | oveq1d | |- ( ( A +P. D ) = ( B +P. C ) -> ( ( ( A .P. G ) +P. ( D .P. G ) ) +P. ( D .P. R ) ) = ( ( ( B .P. G ) +P. ( C .P. G ) ) +P. ( D .P. R ) ) ) |
| 58 | 42 57 | sylan9eqr | |- ( ( ( A +P. D ) = ( B +P. C ) /\ ( F +P. S ) = ( G +P. R ) ) -> ( ( A .P. G ) +P. ( ( D .P. F ) +P. ( D .P. S ) ) ) = ( ( ( B .P. G ) +P. ( C .P. G ) ) +P. ( D .P. R ) ) ) |
| 59 | ovex | |- ( A .P. G ) e. _V |
|
| 60 | ovex | |- ( D .P. S ) e. _V |
|
| 61 | 59 25 60 27 28 | caov12 | |- ( ( A .P. G ) +P. ( ( D .P. F ) +P. ( D .P. S ) ) ) = ( ( D .P. F ) +P. ( ( A .P. G ) +P. ( D .P. S ) ) ) |
| 62 | ovex | |- ( B .P. G ) e. _V |
|
| 63 | ovex | |- ( D .P. R ) e. _V |
|
| 64 | 62 31 63 27 28 | caov32 | |- ( ( ( B .P. G ) +P. ( C .P. G ) ) +P. ( D .P. R ) ) = ( ( ( B .P. G ) +P. ( D .P. R ) ) +P. ( C .P. G ) ) |
| 65 | 58 61 64 | 3eqtr3g | |- ( ( ( A +P. D ) = ( B +P. C ) /\ ( F +P. S ) = ( G +P. R ) ) -> ( ( D .P. F ) +P. ( ( A .P. G ) +P. ( D .P. S ) ) ) = ( ( ( B .P. G ) +P. ( D .P. R ) ) +P. ( C .P. G ) ) ) |
| 66 | 65 | oveq1d | |- ( ( ( A +P. D ) = ( B +P. C ) /\ ( F +P. S ) = ( G +P. R ) ) -> ( ( ( D .P. F ) +P. ( ( A .P. G ) +P. ( D .P. S ) ) ) +P. ( ( B .P. F ) +P. ( C .P. R ) ) ) = ( ( ( ( B .P. G ) +P. ( D .P. R ) ) +P. ( C .P. G ) ) +P. ( ( B .P. F ) +P. ( C .P. R ) ) ) ) |
| 67 | addasspr | |- ( ( ( ( B .P. G ) +P. ( D .P. R ) ) +P. ( C .P. G ) ) +P. ( ( B .P. F ) +P. ( C .P. R ) ) ) = ( ( ( B .P. G ) +P. ( D .P. R ) ) +P. ( ( C .P. G ) +P. ( ( B .P. F ) +P. ( C .P. R ) ) ) ) |
|
| 68 | 66 67 | eqtrdi | |- ( ( ( A +P. D ) = ( B +P. C ) /\ ( F +P. S ) = ( G +P. R ) ) -> ( ( ( D .P. F ) +P. ( ( A .P. G ) +P. ( D .P. S ) ) ) +P. ( ( B .P. F ) +P. ( C .P. R ) ) ) = ( ( ( B .P. G ) +P. ( D .P. R ) ) +P. ( ( C .P. G ) +P. ( ( B .P. F ) +P. ( C .P. R ) ) ) ) ) |
| 69 | 35 68 | eqtr4d | |- ( ( ( A +P. D ) = ( B +P. C ) /\ ( F +P. S ) = ( G +P. R ) ) -> ( ( ( B .P. G ) +P. ( D .P. R ) ) +P. ( ( ( A .P. F ) +P. ( C .P. S ) ) +P. ( D .P. F ) ) ) = ( ( ( D .P. F ) +P. ( ( A .P. G ) +P. ( D .P. S ) ) ) +P. ( ( B .P. F ) +P. ( C .P. R ) ) ) ) |
| 70 | ovex | |- ( ( B .P. G ) +P. ( D .P. R ) ) e. _V |
|
| 71 | ovex | |- ( ( A .P. F ) +P. ( C .P. S ) ) e. _V |
|
| 72 | 70 71 25 27 28 | caov13 | |- ( ( ( B .P. G ) +P. ( D .P. R ) ) +P. ( ( ( A .P. F ) +P. ( C .P. S ) ) +P. ( D .P. F ) ) ) = ( ( D .P. F ) +P. ( ( ( A .P. F ) +P. ( C .P. S ) ) +P. ( ( B .P. G ) +P. ( D .P. R ) ) ) ) |
| 73 | addasspr | |- ( ( ( D .P. F ) +P. ( ( A .P. G ) +P. ( D .P. S ) ) ) +P. ( ( B .P. F ) +P. ( C .P. R ) ) ) = ( ( D .P. F ) +P. ( ( ( A .P. G ) +P. ( D .P. S ) ) +P. ( ( B .P. F ) +P. ( C .P. R ) ) ) ) |
|
| 74 | 69 72 73 | 3eqtr3g | |- ( ( ( A +P. D ) = ( B +P. C ) /\ ( F +P. S ) = ( G +P. R ) ) -> ( ( D .P. F ) +P. ( ( ( A .P. F ) +P. ( C .P. S ) ) +P. ( ( B .P. G ) +P. ( D .P. R ) ) ) ) = ( ( D .P. F ) +P. ( ( ( A .P. G ) +P. ( D .P. S ) ) +P. ( ( B .P. F ) +P. ( C .P. R ) ) ) ) ) |
| 75 | 24 26 62 27 28 63 | caov4 | |- ( ( ( A .P. F ) +P. ( C .P. S ) ) +P. ( ( B .P. G ) +P. ( D .P. R ) ) ) = ( ( ( A .P. F ) +P. ( B .P. G ) ) +P. ( ( C .P. S ) +P. ( D .P. R ) ) ) |
| 76 | 75 | oveq2i | |- ( ( D .P. F ) +P. ( ( ( A .P. F ) +P. ( C .P. S ) ) +P. ( ( B .P. G ) +P. ( D .P. R ) ) ) ) = ( ( D .P. F ) +P. ( ( ( A .P. F ) +P. ( B .P. G ) ) +P. ( ( C .P. S ) +P. ( D .P. R ) ) ) ) |
| 77 | 59 60 30 27 28 32 | caov42 | |- ( ( ( A .P. G ) +P. ( D .P. S ) ) +P. ( ( B .P. F ) +P. ( C .P. R ) ) ) = ( ( ( A .P. G ) +P. ( B .P. F ) ) +P. ( ( C .P. R ) +P. ( D .P. S ) ) ) |
| 78 | 77 | oveq2i | |- ( ( D .P. F ) +P. ( ( ( A .P. G ) +P. ( D .P. S ) ) +P. ( ( B .P. F ) +P. ( C .P. R ) ) ) ) = ( ( D .P. F ) +P. ( ( ( A .P. G ) +P. ( B .P. F ) ) +P. ( ( C .P. R ) +P. ( D .P. S ) ) ) ) |
| 79 | 74 76 78 | 3eqtr3g | |- ( ( ( A +P. D ) = ( B +P. C ) /\ ( F +P. S ) = ( G +P. R ) ) -> ( ( D .P. F ) +P. ( ( ( A .P. F ) +P. ( B .P. G ) ) +P. ( ( C .P. S ) +P. ( D .P. R ) ) ) ) = ( ( D .P. F ) +P. ( ( ( A .P. G ) +P. ( B .P. F ) ) +P. ( ( C .P. R ) +P. ( D .P. S ) ) ) ) ) |