This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma showing compatibility of multiplication. (Contributed by NM, 5-Sep-1995) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mulcmpblnr | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) ∧ ( ( 𝐹 ∈ P ∧ 𝐺 ∈ P ) ∧ ( 𝑅 ∈ P ∧ 𝑆 ∈ P ) ) ) → ( ( ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) ∧ ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) ) → 〈 ( ( 𝐴 ·P 𝐹 ) +P ( 𝐵 ·P 𝐺 ) ) , ( ( 𝐴 ·P 𝐺 ) +P ( 𝐵 ·P 𝐹 ) ) 〉 ~R 〈 ( ( 𝐶 ·P 𝑅 ) +P ( 𝐷 ·P 𝑆 ) ) , ( ( 𝐶 ·P 𝑆 ) +P ( 𝐷 ·P 𝑅 ) ) 〉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulcmpblnrlem | ⊢ ( ( ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) ∧ ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) ) → ( ( 𝐷 ·P 𝐹 ) +P ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐵 ·P 𝐺 ) ) +P ( ( 𝐶 ·P 𝑆 ) +P ( 𝐷 ·P 𝑅 ) ) ) ) = ( ( 𝐷 ·P 𝐹 ) +P ( ( ( 𝐴 ·P 𝐺 ) +P ( 𝐵 ·P 𝐹 ) ) +P ( ( 𝐶 ·P 𝑅 ) +P ( 𝐷 ·P 𝑆 ) ) ) ) ) | |
| 2 | mulclpr | ⊢ ( ( 𝐷 ∈ P ∧ 𝐹 ∈ P ) → ( 𝐷 ·P 𝐹 ) ∈ P ) | |
| 3 | 2 | ad2ant2lr | ⊢ ( ( ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ∧ ( 𝐹 ∈ P ∧ 𝐺 ∈ P ) ) → ( 𝐷 ·P 𝐹 ) ∈ P ) |
| 4 | 3 | ad2ant2lr | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) ∧ ( ( 𝐹 ∈ P ∧ 𝐺 ∈ P ) ∧ ( 𝑅 ∈ P ∧ 𝑆 ∈ P ) ) ) → ( 𝐷 ·P 𝐹 ) ∈ P ) |
| 5 | simplll | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) ∧ ( ( 𝐹 ∈ P ∧ 𝐺 ∈ P ) ∧ ( 𝑅 ∈ P ∧ 𝑆 ∈ P ) ) ) → 𝐴 ∈ P ) | |
| 6 | simprll | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) ∧ ( ( 𝐹 ∈ P ∧ 𝐺 ∈ P ) ∧ ( 𝑅 ∈ P ∧ 𝑆 ∈ P ) ) ) → 𝐹 ∈ P ) | |
| 7 | mulclpr | ⊢ ( ( 𝐴 ∈ P ∧ 𝐹 ∈ P ) → ( 𝐴 ·P 𝐹 ) ∈ P ) | |
| 8 | 5 6 7 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) ∧ ( ( 𝐹 ∈ P ∧ 𝐺 ∈ P ) ∧ ( 𝑅 ∈ P ∧ 𝑆 ∈ P ) ) ) → ( 𝐴 ·P 𝐹 ) ∈ P ) |
| 9 | simpllr | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) ∧ ( ( 𝐹 ∈ P ∧ 𝐺 ∈ P ) ∧ ( 𝑅 ∈ P ∧ 𝑆 ∈ P ) ) ) → 𝐵 ∈ P ) | |
| 10 | simprlr | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) ∧ ( ( 𝐹 ∈ P ∧ 𝐺 ∈ P ) ∧ ( 𝑅 ∈ P ∧ 𝑆 ∈ P ) ) ) → 𝐺 ∈ P ) | |
| 11 | mulclpr | ⊢ ( ( 𝐵 ∈ P ∧ 𝐺 ∈ P ) → ( 𝐵 ·P 𝐺 ) ∈ P ) | |
| 12 | 9 10 11 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) ∧ ( ( 𝐹 ∈ P ∧ 𝐺 ∈ P ) ∧ ( 𝑅 ∈ P ∧ 𝑆 ∈ P ) ) ) → ( 𝐵 ·P 𝐺 ) ∈ P ) |
| 13 | addclpr | ⊢ ( ( ( 𝐴 ·P 𝐹 ) ∈ P ∧ ( 𝐵 ·P 𝐺 ) ∈ P ) → ( ( 𝐴 ·P 𝐹 ) +P ( 𝐵 ·P 𝐺 ) ) ∈ P ) | |
| 14 | 8 12 13 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) ∧ ( ( 𝐹 ∈ P ∧ 𝐺 ∈ P ) ∧ ( 𝑅 ∈ P ∧ 𝑆 ∈ P ) ) ) → ( ( 𝐴 ·P 𝐹 ) +P ( 𝐵 ·P 𝐺 ) ) ∈ P ) |
| 15 | simplrl | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) ∧ ( ( 𝐹 ∈ P ∧ 𝐺 ∈ P ) ∧ ( 𝑅 ∈ P ∧ 𝑆 ∈ P ) ) ) → 𝐶 ∈ P ) | |
| 16 | simprrr | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) ∧ ( ( 𝐹 ∈ P ∧ 𝐺 ∈ P ) ∧ ( 𝑅 ∈ P ∧ 𝑆 ∈ P ) ) ) → 𝑆 ∈ P ) | |
| 17 | mulclpr | ⊢ ( ( 𝐶 ∈ P ∧ 𝑆 ∈ P ) → ( 𝐶 ·P 𝑆 ) ∈ P ) | |
| 18 | 15 16 17 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) ∧ ( ( 𝐹 ∈ P ∧ 𝐺 ∈ P ) ∧ ( 𝑅 ∈ P ∧ 𝑆 ∈ P ) ) ) → ( 𝐶 ·P 𝑆 ) ∈ P ) |
| 19 | simplrr | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) ∧ ( ( 𝐹 ∈ P ∧ 𝐺 ∈ P ) ∧ ( 𝑅 ∈ P ∧ 𝑆 ∈ P ) ) ) → 𝐷 ∈ P ) | |
| 20 | simprrl | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) ∧ ( ( 𝐹 ∈ P ∧ 𝐺 ∈ P ) ∧ ( 𝑅 ∈ P ∧ 𝑆 ∈ P ) ) ) → 𝑅 ∈ P ) | |
| 21 | mulclpr | ⊢ ( ( 𝐷 ∈ P ∧ 𝑅 ∈ P ) → ( 𝐷 ·P 𝑅 ) ∈ P ) | |
| 22 | 19 20 21 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) ∧ ( ( 𝐹 ∈ P ∧ 𝐺 ∈ P ) ∧ ( 𝑅 ∈ P ∧ 𝑆 ∈ P ) ) ) → ( 𝐷 ·P 𝑅 ) ∈ P ) |
| 23 | addclpr | ⊢ ( ( ( 𝐶 ·P 𝑆 ) ∈ P ∧ ( 𝐷 ·P 𝑅 ) ∈ P ) → ( ( 𝐶 ·P 𝑆 ) +P ( 𝐷 ·P 𝑅 ) ) ∈ P ) | |
| 24 | 18 22 23 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) ∧ ( ( 𝐹 ∈ P ∧ 𝐺 ∈ P ) ∧ ( 𝑅 ∈ P ∧ 𝑆 ∈ P ) ) ) → ( ( 𝐶 ·P 𝑆 ) +P ( 𝐷 ·P 𝑅 ) ) ∈ P ) |
| 25 | addclpr | ⊢ ( ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐵 ·P 𝐺 ) ) ∈ P ∧ ( ( 𝐶 ·P 𝑆 ) +P ( 𝐷 ·P 𝑅 ) ) ∈ P ) → ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐵 ·P 𝐺 ) ) +P ( ( 𝐶 ·P 𝑆 ) +P ( 𝐷 ·P 𝑅 ) ) ) ∈ P ) | |
| 26 | 14 24 25 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) ∧ ( ( 𝐹 ∈ P ∧ 𝐺 ∈ P ) ∧ ( 𝑅 ∈ P ∧ 𝑆 ∈ P ) ) ) → ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐵 ·P 𝐺 ) ) +P ( ( 𝐶 ·P 𝑆 ) +P ( 𝐷 ·P 𝑅 ) ) ) ∈ P ) |
| 27 | addcanpr | ⊢ ( ( ( 𝐷 ·P 𝐹 ) ∈ P ∧ ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐵 ·P 𝐺 ) ) +P ( ( 𝐶 ·P 𝑆 ) +P ( 𝐷 ·P 𝑅 ) ) ) ∈ P ) → ( ( ( 𝐷 ·P 𝐹 ) +P ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐵 ·P 𝐺 ) ) +P ( ( 𝐶 ·P 𝑆 ) +P ( 𝐷 ·P 𝑅 ) ) ) ) = ( ( 𝐷 ·P 𝐹 ) +P ( ( ( 𝐴 ·P 𝐺 ) +P ( 𝐵 ·P 𝐹 ) ) +P ( ( 𝐶 ·P 𝑅 ) +P ( 𝐷 ·P 𝑆 ) ) ) ) → ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐵 ·P 𝐺 ) ) +P ( ( 𝐶 ·P 𝑆 ) +P ( 𝐷 ·P 𝑅 ) ) ) = ( ( ( 𝐴 ·P 𝐺 ) +P ( 𝐵 ·P 𝐹 ) ) +P ( ( 𝐶 ·P 𝑅 ) +P ( 𝐷 ·P 𝑆 ) ) ) ) ) | |
| 28 | 4 26 27 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) ∧ ( ( 𝐹 ∈ P ∧ 𝐺 ∈ P ) ∧ ( 𝑅 ∈ P ∧ 𝑆 ∈ P ) ) ) → ( ( ( 𝐷 ·P 𝐹 ) +P ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐵 ·P 𝐺 ) ) +P ( ( 𝐶 ·P 𝑆 ) +P ( 𝐷 ·P 𝑅 ) ) ) ) = ( ( 𝐷 ·P 𝐹 ) +P ( ( ( 𝐴 ·P 𝐺 ) +P ( 𝐵 ·P 𝐹 ) ) +P ( ( 𝐶 ·P 𝑅 ) +P ( 𝐷 ·P 𝑆 ) ) ) ) → ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐵 ·P 𝐺 ) ) +P ( ( 𝐶 ·P 𝑆 ) +P ( 𝐷 ·P 𝑅 ) ) ) = ( ( ( 𝐴 ·P 𝐺 ) +P ( 𝐵 ·P 𝐹 ) ) +P ( ( 𝐶 ·P 𝑅 ) +P ( 𝐷 ·P 𝑆 ) ) ) ) ) |
| 29 | 1 28 | syl5 | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) ∧ ( ( 𝐹 ∈ P ∧ 𝐺 ∈ P ) ∧ ( 𝑅 ∈ P ∧ 𝑆 ∈ P ) ) ) → ( ( ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) ∧ ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) ) → ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐵 ·P 𝐺 ) ) +P ( ( 𝐶 ·P 𝑆 ) +P ( 𝐷 ·P 𝑅 ) ) ) = ( ( ( 𝐴 ·P 𝐺 ) +P ( 𝐵 ·P 𝐹 ) ) +P ( ( 𝐶 ·P 𝑅 ) +P ( 𝐷 ·P 𝑆 ) ) ) ) ) |
| 30 | mulclpr | ⊢ ( ( 𝐴 ∈ P ∧ 𝐺 ∈ P ) → ( 𝐴 ·P 𝐺 ) ∈ P ) | |
| 31 | mulclpr | ⊢ ( ( 𝐵 ∈ P ∧ 𝐹 ∈ P ) → ( 𝐵 ·P 𝐹 ) ∈ P ) | |
| 32 | addclpr | ⊢ ( ( ( 𝐴 ·P 𝐺 ) ∈ P ∧ ( 𝐵 ·P 𝐹 ) ∈ P ) → ( ( 𝐴 ·P 𝐺 ) +P ( 𝐵 ·P 𝐹 ) ) ∈ P ) | |
| 33 | 30 31 32 | syl2an | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐺 ∈ P ) ∧ ( 𝐵 ∈ P ∧ 𝐹 ∈ P ) ) → ( ( 𝐴 ·P 𝐺 ) +P ( 𝐵 ·P 𝐹 ) ) ∈ P ) |
| 34 | 5 10 9 6 33 | syl22anc | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) ∧ ( ( 𝐹 ∈ P ∧ 𝐺 ∈ P ) ∧ ( 𝑅 ∈ P ∧ 𝑆 ∈ P ) ) ) → ( ( 𝐴 ·P 𝐺 ) +P ( 𝐵 ·P 𝐹 ) ) ∈ P ) |
| 35 | mulclpr | ⊢ ( ( 𝐶 ∈ P ∧ 𝑅 ∈ P ) → ( 𝐶 ·P 𝑅 ) ∈ P ) | |
| 36 | mulclpr | ⊢ ( ( 𝐷 ∈ P ∧ 𝑆 ∈ P ) → ( 𝐷 ·P 𝑆 ) ∈ P ) | |
| 37 | addclpr | ⊢ ( ( ( 𝐶 ·P 𝑅 ) ∈ P ∧ ( 𝐷 ·P 𝑆 ) ∈ P ) → ( ( 𝐶 ·P 𝑅 ) +P ( 𝐷 ·P 𝑆 ) ) ∈ P ) | |
| 38 | 35 36 37 | syl2an | ⊢ ( ( ( 𝐶 ∈ P ∧ 𝑅 ∈ P ) ∧ ( 𝐷 ∈ P ∧ 𝑆 ∈ P ) ) → ( ( 𝐶 ·P 𝑅 ) +P ( 𝐷 ·P 𝑆 ) ) ∈ P ) |
| 39 | 15 20 19 16 38 | syl22anc | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) ∧ ( ( 𝐹 ∈ P ∧ 𝐺 ∈ P ) ∧ ( 𝑅 ∈ P ∧ 𝑆 ∈ P ) ) ) → ( ( 𝐶 ·P 𝑅 ) +P ( 𝐷 ·P 𝑆 ) ) ∈ P ) |
| 40 | enrbreq | ⊢ ( ( ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐵 ·P 𝐺 ) ) ∈ P ∧ ( ( 𝐴 ·P 𝐺 ) +P ( 𝐵 ·P 𝐹 ) ) ∈ P ) ∧ ( ( ( 𝐶 ·P 𝑅 ) +P ( 𝐷 ·P 𝑆 ) ) ∈ P ∧ ( ( 𝐶 ·P 𝑆 ) +P ( 𝐷 ·P 𝑅 ) ) ∈ P ) ) → ( 〈 ( ( 𝐴 ·P 𝐹 ) +P ( 𝐵 ·P 𝐺 ) ) , ( ( 𝐴 ·P 𝐺 ) +P ( 𝐵 ·P 𝐹 ) ) 〉 ~R 〈 ( ( 𝐶 ·P 𝑅 ) +P ( 𝐷 ·P 𝑆 ) ) , ( ( 𝐶 ·P 𝑆 ) +P ( 𝐷 ·P 𝑅 ) ) 〉 ↔ ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐵 ·P 𝐺 ) ) +P ( ( 𝐶 ·P 𝑆 ) +P ( 𝐷 ·P 𝑅 ) ) ) = ( ( ( 𝐴 ·P 𝐺 ) +P ( 𝐵 ·P 𝐹 ) ) +P ( ( 𝐶 ·P 𝑅 ) +P ( 𝐷 ·P 𝑆 ) ) ) ) ) | |
| 41 | 14 34 39 24 40 | syl22anc | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) ∧ ( ( 𝐹 ∈ P ∧ 𝐺 ∈ P ) ∧ ( 𝑅 ∈ P ∧ 𝑆 ∈ P ) ) ) → ( 〈 ( ( 𝐴 ·P 𝐹 ) +P ( 𝐵 ·P 𝐺 ) ) , ( ( 𝐴 ·P 𝐺 ) +P ( 𝐵 ·P 𝐹 ) ) 〉 ~R 〈 ( ( 𝐶 ·P 𝑅 ) +P ( 𝐷 ·P 𝑆 ) ) , ( ( 𝐶 ·P 𝑆 ) +P ( 𝐷 ·P 𝑅 ) ) 〉 ↔ ( ( ( 𝐴 ·P 𝐹 ) +P ( 𝐵 ·P 𝐺 ) ) +P ( ( 𝐶 ·P 𝑆 ) +P ( 𝐷 ·P 𝑅 ) ) ) = ( ( ( 𝐴 ·P 𝐺 ) +P ( 𝐵 ·P 𝐹 ) ) +P ( ( 𝐶 ·P 𝑅 ) +P ( 𝐷 ·P 𝑆 ) ) ) ) ) |
| 42 | 29 41 | sylibrd | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) ∧ ( ( 𝐹 ∈ P ∧ 𝐺 ∈ P ) ∧ ( 𝑅 ∈ P ∧ 𝑆 ∈ P ) ) ) → ( ( ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) ∧ ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) ) → 〈 ( ( 𝐴 ·P 𝐹 ) +P ( 𝐵 ·P 𝐺 ) ) , ( ( 𝐴 ·P 𝐺 ) +P ( 𝐵 ·P 𝐹 ) ) 〉 ~R 〈 ( ( 𝐶 ·P 𝑅 ) +P ( 𝐷 ·P 𝑆 ) ) , ( ( 𝐶 ·P 𝑆 ) +P ( 𝐷 ·P 𝑅 ) ) 〉 ) ) |