This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is no identity element for addition on positive integers. (Contributed by NM, 28-Nov-1995) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addnidpi | ⊢ ( 𝐴 ∈ N → ¬ ( 𝐴 +N 𝐵 ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pinn | ⊢ ( 𝐴 ∈ N → 𝐴 ∈ ω ) | |
| 2 | elni2 | ⊢ ( 𝐵 ∈ N ↔ ( 𝐵 ∈ ω ∧ ∅ ∈ 𝐵 ) ) | |
| 3 | nnaordi | ⊢ ( ( 𝐵 ∈ ω ∧ 𝐴 ∈ ω ) → ( ∅ ∈ 𝐵 → ( 𝐴 +o ∅ ) ∈ ( 𝐴 +o 𝐵 ) ) ) | |
| 4 | nna0 | ⊢ ( 𝐴 ∈ ω → ( 𝐴 +o ∅ ) = 𝐴 ) | |
| 5 | 4 | eleq1d | ⊢ ( 𝐴 ∈ ω → ( ( 𝐴 +o ∅ ) ∈ ( 𝐴 +o 𝐵 ) ↔ 𝐴 ∈ ( 𝐴 +o 𝐵 ) ) ) |
| 6 | nnord | ⊢ ( 𝐴 ∈ ω → Ord 𝐴 ) | |
| 7 | ordirr | ⊢ ( Ord 𝐴 → ¬ 𝐴 ∈ 𝐴 ) | |
| 8 | 6 7 | syl | ⊢ ( 𝐴 ∈ ω → ¬ 𝐴 ∈ 𝐴 ) |
| 9 | eleq2 | ⊢ ( ( 𝐴 +o 𝐵 ) = 𝐴 → ( 𝐴 ∈ ( 𝐴 +o 𝐵 ) ↔ 𝐴 ∈ 𝐴 ) ) | |
| 10 | 9 | notbid | ⊢ ( ( 𝐴 +o 𝐵 ) = 𝐴 → ( ¬ 𝐴 ∈ ( 𝐴 +o 𝐵 ) ↔ ¬ 𝐴 ∈ 𝐴 ) ) |
| 11 | 8 10 | syl5ibrcom | ⊢ ( 𝐴 ∈ ω → ( ( 𝐴 +o 𝐵 ) = 𝐴 → ¬ 𝐴 ∈ ( 𝐴 +o 𝐵 ) ) ) |
| 12 | 11 | con2d | ⊢ ( 𝐴 ∈ ω → ( 𝐴 ∈ ( 𝐴 +o 𝐵 ) → ¬ ( 𝐴 +o 𝐵 ) = 𝐴 ) ) |
| 13 | 5 12 | sylbid | ⊢ ( 𝐴 ∈ ω → ( ( 𝐴 +o ∅ ) ∈ ( 𝐴 +o 𝐵 ) → ¬ ( 𝐴 +o 𝐵 ) = 𝐴 ) ) |
| 14 | 13 | adantl | ⊢ ( ( 𝐵 ∈ ω ∧ 𝐴 ∈ ω ) → ( ( 𝐴 +o ∅ ) ∈ ( 𝐴 +o 𝐵 ) → ¬ ( 𝐴 +o 𝐵 ) = 𝐴 ) ) |
| 15 | 3 14 | syld | ⊢ ( ( 𝐵 ∈ ω ∧ 𝐴 ∈ ω ) → ( ∅ ∈ 𝐵 → ¬ ( 𝐴 +o 𝐵 ) = 𝐴 ) ) |
| 16 | 15 | expcom | ⊢ ( 𝐴 ∈ ω → ( 𝐵 ∈ ω → ( ∅ ∈ 𝐵 → ¬ ( 𝐴 +o 𝐵 ) = 𝐴 ) ) ) |
| 17 | 16 | imp32 | ⊢ ( ( 𝐴 ∈ ω ∧ ( 𝐵 ∈ ω ∧ ∅ ∈ 𝐵 ) ) → ¬ ( 𝐴 +o 𝐵 ) = 𝐴 ) |
| 18 | 2 17 | sylan2b | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ N ) → ¬ ( 𝐴 +o 𝐵 ) = 𝐴 ) |
| 19 | 1 18 | sylan | ⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ¬ ( 𝐴 +o 𝐵 ) = 𝐴 ) |
| 20 | addpiord | ⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐴 +N 𝐵 ) = ( 𝐴 +o 𝐵 ) ) | |
| 21 | 20 | eqeq1d | ⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( ( 𝐴 +N 𝐵 ) = 𝐴 ↔ ( 𝐴 +o 𝐵 ) = 𝐴 ) ) |
| 22 | 19 21 | mtbird | ⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ¬ ( 𝐴 +N 𝐵 ) = 𝐴 ) |
| 23 | 22 | a1d | ⊢ ( ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐴 ∈ N → ¬ ( 𝐴 +N 𝐵 ) = 𝐴 ) ) |
| 24 | dmaddpi | ⊢ dom +N = ( N × N ) | |
| 25 | 24 | ndmov | ⊢ ( ¬ ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐴 +N 𝐵 ) = ∅ ) |
| 26 | 25 | eqeq1d | ⊢ ( ¬ ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( ( 𝐴 +N 𝐵 ) = 𝐴 ↔ ∅ = 𝐴 ) ) |
| 27 | 0npi | ⊢ ¬ ∅ ∈ N | |
| 28 | eleq1 | ⊢ ( ∅ = 𝐴 → ( ∅ ∈ N ↔ 𝐴 ∈ N ) ) | |
| 29 | 27 28 | mtbii | ⊢ ( ∅ = 𝐴 → ¬ 𝐴 ∈ N ) |
| 30 | 26 29 | biimtrdi | ⊢ ( ¬ ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( ( 𝐴 +N 𝐵 ) = 𝐴 → ¬ 𝐴 ∈ N ) ) |
| 31 | 30 | con2d | ⊢ ( ¬ ( 𝐴 ∈ N ∧ 𝐵 ∈ N ) → ( 𝐴 ∈ N → ¬ ( 𝐴 +N 𝐵 ) = 𝐴 ) ) |
| 32 | 23 31 | pm2.61i | ⊢ ( 𝐴 ∈ N → ¬ ( 𝐴 +N 𝐵 ) = 𝐴 ) |