This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of an integer and an integer greater than 1 increased by 1 is 1 modulo the integer greater than 1. (Contributed by AV, 15-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mulp1mod1 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( ( 𝑁 · 𝐴 ) + 1 ) mod 𝑁 ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelcn | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 𝑁 ∈ ℂ ) | |
| 2 | 1 | adantl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) → 𝑁 ∈ ℂ ) |
| 3 | zcn | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℂ ) | |
| 4 | 3 | adantr | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) → 𝐴 ∈ ℂ ) |
| 5 | 2 4 | mulcomd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑁 · 𝐴 ) = ( 𝐴 · 𝑁 ) ) |
| 6 | 5 | oveq1d | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 𝑁 · 𝐴 ) mod 𝑁 ) = ( ( 𝐴 · 𝑁 ) mod 𝑁 ) ) |
| 7 | eluz2nn | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 𝑁 ∈ ℕ ) | |
| 8 | 7 | nnrpd | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 𝑁 ∈ ℝ+ ) |
| 9 | mulmod0 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℝ+ ) → ( ( 𝐴 · 𝑁 ) mod 𝑁 ) = 0 ) | |
| 10 | 8 9 | sylan2 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 𝐴 · 𝑁 ) mod 𝑁 ) = 0 ) |
| 11 | 6 10 | eqtrd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 𝑁 · 𝐴 ) mod 𝑁 ) = 0 ) |
| 12 | 11 | oveq1d | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( ( 𝑁 · 𝐴 ) mod 𝑁 ) + 1 ) = ( 0 + 1 ) ) |
| 13 | 0p1e1 | ⊢ ( 0 + 1 ) = 1 | |
| 14 | 12 13 | eqtrdi | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( ( 𝑁 · 𝐴 ) mod 𝑁 ) + 1 ) = 1 ) |
| 15 | 14 | oveq1d | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( ( ( 𝑁 · 𝐴 ) mod 𝑁 ) + 1 ) mod 𝑁 ) = ( 1 mod 𝑁 ) ) |
| 16 | eluzelre | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 𝑁 ∈ ℝ ) | |
| 17 | 16 | adantl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) → 𝑁 ∈ ℝ ) |
| 18 | zre | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℝ ) | |
| 19 | 18 | adantr | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) → 𝐴 ∈ ℝ ) |
| 20 | 17 19 | remulcld | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑁 · 𝐴 ) ∈ ℝ ) |
| 21 | 1red | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) → 1 ∈ ℝ ) | |
| 22 | 8 | adantl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) → 𝑁 ∈ ℝ+ ) |
| 23 | modaddmod | ⊢ ( ( ( 𝑁 · 𝐴 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ+ ) → ( ( ( ( 𝑁 · 𝐴 ) mod 𝑁 ) + 1 ) mod 𝑁 ) = ( ( ( 𝑁 · 𝐴 ) + 1 ) mod 𝑁 ) ) | |
| 24 | 20 21 22 23 | syl3anc | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( ( ( 𝑁 · 𝐴 ) mod 𝑁 ) + 1 ) mod 𝑁 ) = ( ( ( 𝑁 · 𝐴 ) + 1 ) mod 𝑁 ) ) |
| 25 | eluz2gt1 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 1 < 𝑁 ) | |
| 26 | 16 25 | jca | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 ∈ ℝ ∧ 1 < 𝑁 ) ) |
| 27 | 26 | adantl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑁 ∈ ℝ ∧ 1 < 𝑁 ) ) |
| 28 | 1mod | ⊢ ( ( 𝑁 ∈ ℝ ∧ 1 < 𝑁 ) → ( 1 mod 𝑁 ) = 1 ) | |
| 29 | 27 28 | syl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) → ( 1 mod 𝑁 ) = 1 ) |
| 30 | 15 24 29 | 3eqtr3d | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( ( 𝑁 · 𝐴 ) + 1 ) mod 𝑁 ) = 1 ) |