This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of a positive real number less than an upper bound and the product of an integer and the upper bound is the positive real number modulo the upper bound. (Contributed by AV, 5-Jul-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | muladdmodid | |- ( ( N e. ZZ /\ M e. RR+ /\ A e. ( 0 [,) M ) ) -> ( ( ( N x. M ) + A ) mod M ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0red | |- ( M e. RR+ -> 0 e. RR ) |
|
| 2 | rpxr | |- ( M e. RR+ -> M e. RR* ) |
|
| 3 | elico2 | |- ( ( 0 e. RR /\ M e. RR* ) -> ( A e. ( 0 [,) M ) <-> ( A e. RR /\ 0 <_ A /\ A < M ) ) ) |
|
| 4 | 1 2 3 | syl2anc | |- ( M e. RR+ -> ( A e. ( 0 [,) M ) <-> ( A e. RR /\ 0 <_ A /\ A < M ) ) ) |
| 5 | 4 | adantl | |- ( ( N e. ZZ /\ M e. RR+ ) -> ( A e. ( 0 [,) M ) <-> ( A e. RR /\ 0 <_ A /\ A < M ) ) ) |
| 6 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 7 | rpcn | |- ( M e. RR+ -> M e. CC ) |
|
| 8 | mulcl | |- ( ( N e. CC /\ M e. CC ) -> ( N x. M ) e. CC ) |
|
| 9 | 6 7 8 | syl2an | |- ( ( N e. ZZ /\ M e. RR+ ) -> ( N x. M ) e. CC ) |
| 10 | 9 | adantr | |- ( ( ( N e. ZZ /\ M e. RR+ ) /\ ( A e. RR /\ 0 <_ A /\ A < M ) ) -> ( N x. M ) e. CC ) |
| 11 | recn | |- ( A e. RR -> A e. CC ) |
|
| 12 | 11 | 3ad2ant1 | |- ( ( A e. RR /\ 0 <_ A /\ A < M ) -> A e. CC ) |
| 13 | 12 | adantl | |- ( ( ( N e. ZZ /\ M e. RR+ ) /\ ( A e. RR /\ 0 <_ A /\ A < M ) ) -> A e. CC ) |
| 14 | 10 13 | addcomd | |- ( ( ( N e. ZZ /\ M e. RR+ ) /\ ( A e. RR /\ 0 <_ A /\ A < M ) ) -> ( ( N x. M ) + A ) = ( A + ( N x. M ) ) ) |
| 15 | 14 | oveq1d | |- ( ( ( N e. ZZ /\ M e. RR+ ) /\ ( A e. RR /\ 0 <_ A /\ A < M ) ) -> ( ( ( N x. M ) + A ) mod M ) = ( ( A + ( N x. M ) ) mod M ) ) |
| 16 | simp1 | |- ( ( A e. RR /\ 0 <_ A /\ A < M ) -> A e. RR ) |
|
| 17 | 16 | adantl | |- ( ( ( N e. ZZ /\ M e. RR+ ) /\ ( A e. RR /\ 0 <_ A /\ A < M ) ) -> A e. RR ) |
| 18 | simpr | |- ( ( N e. ZZ /\ M e. RR+ ) -> M e. RR+ ) |
|
| 19 | 18 | adantr | |- ( ( ( N e. ZZ /\ M e. RR+ ) /\ ( A e. RR /\ 0 <_ A /\ A < M ) ) -> M e. RR+ ) |
| 20 | simpll | |- ( ( ( N e. ZZ /\ M e. RR+ ) /\ ( A e. RR /\ 0 <_ A /\ A < M ) ) -> N e. ZZ ) |
|
| 21 | modcyc | |- ( ( A e. RR /\ M e. RR+ /\ N e. ZZ ) -> ( ( A + ( N x. M ) ) mod M ) = ( A mod M ) ) |
|
| 22 | 17 19 20 21 | syl3anc | |- ( ( ( N e. ZZ /\ M e. RR+ ) /\ ( A e. RR /\ 0 <_ A /\ A < M ) ) -> ( ( A + ( N x. M ) ) mod M ) = ( A mod M ) ) |
| 23 | 18 16 | anim12ci | |- ( ( ( N e. ZZ /\ M e. RR+ ) /\ ( A e. RR /\ 0 <_ A /\ A < M ) ) -> ( A e. RR /\ M e. RR+ ) ) |
| 24 | 3simpc | |- ( ( A e. RR /\ 0 <_ A /\ A < M ) -> ( 0 <_ A /\ A < M ) ) |
|
| 25 | 24 | adantl | |- ( ( ( N e. ZZ /\ M e. RR+ ) /\ ( A e. RR /\ 0 <_ A /\ A < M ) ) -> ( 0 <_ A /\ A < M ) ) |
| 26 | modid | |- ( ( ( A e. RR /\ M e. RR+ ) /\ ( 0 <_ A /\ A < M ) ) -> ( A mod M ) = A ) |
|
| 27 | 23 25 26 | syl2anc | |- ( ( ( N e. ZZ /\ M e. RR+ ) /\ ( A e. RR /\ 0 <_ A /\ A < M ) ) -> ( A mod M ) = A ) |
| 28 | 15 22 27 | 3eqtrd | |- ( ( ( N e. ZZ /\ M e. RR+ ) /\ ( A e. RR /\ 0 <_ A /\ A < M ) ) -> ( ( ( N x. M ) + A ) mod M ) = A ) |
| 29 | 28 | ex | |- ( ( N e. ZZ /\ M e. RR+ ) -> ( ( A e. RR /\ 0 <_ A /\ A < M ) -> ( ( ( N x. M ) + A ) mod M ) = A ) ) |
| 30 | 5 29 | sylbid | |- ( ( N e. ZZ /\ M e. RR+ ) -> ( A e. ( 0 [,) M ) -> ( ( ( N x. M ) + A ) mod M ) = A ) ) |
| 31 | 30 | 3impia | |- ( ( N e. ZZ /\ M e. RR+ /\ A e. ( 0 [,) M ) ) -> ( ( ( N x. M ) + A ) mod M ) = A ) |