This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the result of a multiplication is strictly negative, then multiplicands are of different signs. (Contributed by Thierry Arnoux, 19-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mul2lt0.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| mul2lt0.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| mul2lt0.3 | ⊢ ( 𝜑 → ( 𝐴 · 𝐵 ) < 0 ) | ||
| Assertion | mul2lt0rlt0 | ⊢ ( ( 𝜑 ∧ 𝐵 < 0 ) → 0 < 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul2lt0.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | mul2lt0.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | mul2lt0.3 | ⊢ ( 𝜑 → ( 𝐴 · 𝐵 ) < 0 ) | |
| 4 | 1 2 | remulcld | ⊢ ( 𝜑 → ( 𝐴 · 𝐵 ) ∈ ℝ ) |
| 5 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝐵 < 0 ) → ( 𝐴 · 𝐵 ) ∈ ℝ ) |
| 6 | 0red | ⊢ ( ( 𝜑 ∧ 𝐵 < 0 ) → 0 ∈ ℝ ) | |
| 7 | negelrp | ⊢ ( 𝐵 ∈ ℝ → ( - 𝐵 ∈ ℝ+ ↔ 𝐵 < 0 ) ) | |
| 8 | 2 7 | syl | ⊢ ( 𝜑 → ( - 𝐵 ∈ ℝ+ ↔ 𝐵 < 0 ) ) |
| 9 | 8 | biimpar | ⊢ ( ( 𝜑 ∧ 𝐵 < 0 ) → - 𝐵 ∈ ℝ+ ) |
| 10 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝐵 < 0 ) → ( 𝐴 · 𝐵 ) < 0 ) |
| 11 | 5 6 9 10 | ltdiv1dd | ⊢ ( ( 𝜑 ∧ 𝐵 < 0 ) → ( ( 𝐴 · 𝐵 ) / - 𝐵 ) < ( 0 / - 𝐵 ) ) |
| 12 | 1 | recnd | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 13 | 12 | adantr | ⊢ ( ( 𝜑 ∧ 𝐵 < 0 ) → 𝐴 ∈ ℂ ) |
| 14 | 2 | recnd | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 15 | 14 | adantr | ⊢ ( ( 𝜑 ∧ 𝐵 < 0 ) → 𝐵 ∈ ℂ ) |
| 16 | 13 15 | mulcld | ⊢ ( ( 𝜑 ∧ 𝐵 < 0 ) → ( 𝐴 · 𝐵 ) ∈ ℂ ) |
| 17 | simpr | ⊢ ( ( 𝜑 ∧ 𝐵 < 0 ) → 𝐵 < 0 ) | |
| 18 | 17 | lt0ne0d | ⊢ ( ( 𝜑 ∧ 𝐵 < 0 ) → 𝐵 ≠ 0 ) |
| 19 | 16 15 18 | divneg2d | ⊢ ( ( 𝜑 ∧ 𝐵 < 0 ) → - ( ( 𝐴 · 𝐵 ) / 𝐵 ) = ( ( 𝐴 · 𝐵 ) / - 𝐵 ) ) |
| 20 | 13 15 18 | divcan4d | ⊢ ( ( 𝜑 ∧ 𝐵 < 0 ) → ( ( 𝐴 · 𝐵 ) / 𝐵 ) = 𝐴 ) |
| 21 | 20 | negeqd | ⊢ ( ( 𝜑 ∧ 𝐵 < 0 ) → - ( ( 𝐴 · 𝐵 ) / 𝐵 ) = - 𝐴 ) |
| 22 | 19 21 | eqtr3d | ⊢ ( ( 𝜑 ∧ 𝐵 < 0 ) → ( ( 𝐴 · 𝐵 ) / - 𝐵 ) = - 𝐴 ) |
| 23 | 15 | negcld | ⊢ ( ( 𝜑 ∧ 𝐵 < 0 ) → - 𝐵 ∈ ℂ ) |
| 24 | 15 18 | negne0d | ⊢ ( ( 𝜑 ∧ 𝐵 < 0 ) → - 𝐵 ≠ 0 ) |
| 25 | 23 24 | div0d | ⊢ ( ( 𝜑 ∧ 𝐵 < 0 ) → ( 0 / - 𝐵 ) = 0 ) |
| 26 | 11 22 25 | 3brtr3d | ⊢ ( ( 𝜑 ∧ 𝐵 < 0 ) → - 𝐴 < 0 ) |
| 27 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝐵 < 0 ) → 𝐴 ∈ ℝ ) |
| 28 | 27 | lt0neg2d | ⊢ ( ( 𝜑 ∧ 𝐵 < 0 ) → ( 0 < 𝐴 ↔ - 𝐴 < 0 ) ) |
| 29 | 26 28 | mpbird | ⊢ ( ( 𝜑 ∧ 𝐵 < 0 ) → 0 < 𝐴 ) |