This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of two negative numbers is positive. (Contributed by Jeff Hankins, 8-Jun-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mullt0 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 < 0 ) ) → 0 < ( 𝐴 · 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | renegcl | ⊢ ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → - 𝐴 ∈ ℝ ) |
| 3 | lt0neg1 | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 < 0 ↔ 0 < - 𝐴 ) ) | |
| 4 | 3 | biimpa | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → 0 < - 𝐴 ) |
| 5 | 2 4 | jca | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → ( - 𝐴 ∈ ℝ ∧ 0 < - 𝐴 ) ) |
| 6 | renegcl | ⊢ ( 𝐵 ∈ ℝ → - 𝐵 ∈ ℝ ) | |
| 7 | 6 | adantr | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐵 < 0 ) → - 𝐵 ∈ ℝ ) |
| 8 | lt0neg1 | ⊢ ( 𝐵 ∈ ℝ → ( 𝐵 < 0 ↔ 0 < - 𝐵 ) ) | |
| 9 | 8 | biimpa | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐵 < 0 ) → 0 < - 𝐵 ) |
| 10 | 7 9 | jca | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐵 < 0 ) → ( - 𝐵 ∈ ℝ ∧ 0 < - 𝐵 ) ) |
| 11 | mulgt0 | ⊢ ( ( ( - 𝐴 ∈ ℝ ∧ 0 < - 𝐴 ) ∧ ( - 𝐵 ∈ ℝ ∧ 0 < - 𝐵 ) ) → 0 < ( - 𝐴 · - 𝐵 ) ) | |
| 12 | 5 10 11 | syl2an | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 < 0 ) ) → 0 < ( - 𝐴 · - 𝐵 ) ) |
| 13 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 14 | recn | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) | |
| 15 | mul2neg | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( - 𝐴 · - 𝐵 ) = ( 𝐴 · 𝐵 ) ) | |
| 16 | 13 14 15 | syl2an | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( - 𝐴 · - 𝐵 ) = ( 𝐴 · 𝐵 ) ) |
| 17 | 16 | ad2ant2r | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 < 0 ) ) → ( - 𝐴 · - 𝐵 ) = ( 𝐴 · 𝐵 ) ) |
| 18 | 12 17 | breqtrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 < 0 ) ) → 0 < ( 𝐴 · 𝐵 ) ) |