This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonzero square is positive. Theorem I.20 of Apostol p. 20. (Contributed by NM, 6-May-1999) (Proof shortened by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | msqgt0 | |- ( ( A e. RR /\ A =/= 0 ) -> 0 < ( A x. A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | |- ( A e. RR -> A e. RR ) |
|
| 2 | 0red | |- ( A e. RR -> 0 e. RR ) |
|
| 3 | 1 2 | lttri2d | |- ( A e. RR -> ( A =/= 0 <-> ( A < 0 \/ 0 < A ) ) ) |
| 4 | 3 | biimpa | |- ( ( A e. RR /\ A =/= 0 ) -> ( A < 0 \/ 0 < A ) ) |
| 5 | mullt0 | |- ( ( ( A e. RR /\ A < 0 ) /\ ( A e. RR /\ A < 0 ) ) -> 0 < ( A x. A ) ) |
|
| 6 | 5 | anidms | |- ( ( A e. RR /\ A < 0 ) -> 0 < ( A x. A ) ) |
| 7 | mulgt0 | |- ( ( ( A e. RR /\ 0 < A ) /\ ( A e. RR /\ 0 < A ) ) -> 0 < ( A x. A ) ) |
|
| 8 | 7 | anidms | |- ( ( A e. RR /\ 0 < A ) -> 0 < ( A x. A ) ) |
| 9 | 6 8 | jaodan | |- ( ( A e. RR /\ ( A < 0 \/ 0 < A ) ) -> 0 < ( A x. A ) ) |
| 10 | 4 9 | syldan | |- ( ( A e. RR /\ A =/= 0 ) -> 0 < ( A x. A ) ) |