This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Least upper bounds in a Moore space are realized by the closure of the union. (Contributed by Stefan O'Rear, 31-Jan-2015) (Proof shortened by Zhi Wang, 29-Sep-2024) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mreclatGOOD.i | |- I = ( toInc ` C ) |
|
| mrelatlubALT.f | |- F = ( mrCls ` C ) |
||
| mrelatlubALT.l | |- L = ( lub ` I ) |
||
| Assertion | mrelatlubALT | |- ( ( C e. ( Moore ` X ) /\ U C_ C ) -> ( L ` U ) = ( F ` U. U ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mreclatGOOD.i | |- I = ( toInc ` C ) |
|
| 2 | mrelatlubALT.f | |- F = ( mrCls ` C ) |
|
| 3 | mrelatlubALT.l | |- L = ( lub ` I ) |
|
| 4 | simpl | |- ( ( C e. ( Moore ` X ) /\ U C_ C ) -> C e. ( Moore ` X ) ) |
|
| 5 | simpr | |- ( ( C e. ( Moore ` X ) /\ U C_ C ) -> U C_ C ) |
|
| 6 | 3 | a1i | |- ( ( C e. ( Moore ` X ) /\ U C_ C ) -> L = ( lub ` I ) ) |
| 7 | mreuniss | |- ( ( C e. ( Moore ` X ) /\ U C_ C ) -> U. U C_ X ) |
|
| 8 | 2 | mrcval | |- ( ( C e. ( Moore ` X ) /\ U. U C_ X ) -> ( F ` U. U ) = |^| { x e. C | U. U C_ x } ) |
| 9 | 7 8 | syldan | |- ( ( C e. ( Moore ` X ) /\ U C_ C ) -> ( F ` U. U ) = |^| { x e. C | U. U C_ x } ) |
| 10 | 2 | mrccl | |- ( ( C e. ( Moore ` X ) /\ U. U C_ X ) -> ( F ` U. U ) e. C ) |
| 11 | 7 10 | syldan | |- ( ( C e. ( Moore ` X ) /\ U C_ C ) -> ( F ` U. U ) e. C ) |
| 12 | 1 4 5 6 9 11 | ipolub | |- ( ( C e. ( Moore ` X ) /\ U C_ C ) -> ( L ` U ) = ( F ` U. U ) ) |