This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a Moore system, the closure operator is said to have theexchange property if, for all elements y and z of the base set and subsets S of the base set such that z is in the closure of ( S u. { y } ) but not in the closure of S , y is in the closure of ( S u. { z } ) (Definition 3.1.9 in FaureFrolicher p. 57 to 58.) This theorem allows to construct substitution instances of this definition. (Contributed by David Moews, 1-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mreexd.1 | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| mreexd.2 | ⊢ ( 𝜑 → ∀ 𝑠 ∈ 𝒫 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁 ‘ 𝑠 ) ) 𝑦 ∈ ( 𝑁 ‘ ( 𝑠 ∪ { 𝑧 } ) ) ) | ||
| mreexd.3 | ⊢ ( 𝜑 → 𝑆 ⊆ 𝑋 ) | ||
| mreexd.4 | ⊢ ( 𝜑 → 𝑌 ∈ 𝑋 ) | ||
| mreexd.5 | ⊢ ( 𝜑 → 𝑍 ∈ ( 𝑁 ‘ ( 𝑆 ∪ { 𝑌 } ) ) ) | ||
| mreexd.6 | ⊢ ( 𝜑 → ¬ 𝑍 ∈ ( 𝑁 ‘ 𝑆 ) ) | ||
| Assertion | mreexd | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝑁 ‘ ( 𝑆 ∪ { 𝑍 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mreexd.1 | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 2 | mreexd.2 | ⊢ ( 𝜑 → ∀ 𝑠 ∈ 𝒫 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁 ‘ 𝑠 ) ) 𝑦 ∈ ( 𝑁 ‘ ( 𝑠 ∪ { 𝑧 } ) ) ) | |
| 3 | mreexd.3 | ⊢ ( 𝜑 → 𝑆 ⊆ 𝑋 ) | |
| 4 | mreexd.4 | ⊢ ( 𝜑 → 𝑌 ∈ 𝑋 ) | |
| 5 | mreexd.5 | ⊢ ( 𝜑 → 𝑍 ∈ ( 𝑁 ‘ ( 𝑆 ∪ { 𝑌 } ) ) ) | |
| 6 | mreexd.6 | ⊢ ( 𝜑 → ¬ 𝑍 ∈ ( 𝑁 ‘ 𝑆 ) ) | |
| 7 | 1 3 | sselpwd | ⊢ ( 𝜑 → 𝑆 ∈ 𝒫 𝑋 ) |
| 8 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑠 = 𝑆 ) → 𝑌 ∈ 𝑋 ) |
| 9 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑦 = 𝑌 ) → 𝑍 ∈ ( 𝑁 ‘ ( 𝑆 ∪ { 𝑌 } ) ) ) |
| 10 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑦 = 𝑌 ) → 𝑠 = 𝑆 ) | |
| 11 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑦 = 𝑌 ) → 𝑦 = 𝑌 ) | |
| 12 | 11 | sneqd | ⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑦 = 𝑌 ) → { 𝑦 } = { 𝑌 } ) |
| 13 | 10 12 | uneq12d | ⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑦 = 𝑌 ) → ( 𝑠 ∪ { 𝑦 } ) = ( 𝑆 ∪ { 𝑌 } ) ) |
| 14 | 13 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑦 = 𝑌 ) → ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) = ( 𝑁 ‘ ( 𝑆 ∪ { 𝑌 } ) ) ) |
| 15 | 9 14 | eleqtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑦 = 𝑌 ) → 𝑍 ∈ ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ) |
| 16 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑦 = 𝑌 ) → ¬ 𝑍 ∈ ( 𝑁 ‘ 𝑆 ) ) |
| 17 | 10 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑦 = 𝑌 ) → ( 𝑁 ‘ 𝑠 ) = ( 𝑁 ‘ 𝑆 ) ) |
| 18 | 16 17 | neleqtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑦 = 𝑌 ) → ¬ 𝑍 ∈ ( 𝑁 ‘ 𝑠 ) ) |
| 19 | 15 18 | eldifd | ⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑦 = 𝑌 ) → 𝑍 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁 ‘ 𝑠 ) ) ) |
| 20 | simplr | ⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) → 𝑦 = 𝑌 ) | |
| 21 | simpllr | ⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) → 𝑠 = 𝑆 ) | |
| 22 | simpr | ⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) → 𝑧 = 𝑍 ) | |
| 23 | 22 | sneqd | ⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) → { 𝑧 } = { 𝑍 } ) |
| 24 | 21 23 | uneq12d | ⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) → ( 𝑠 ∪ { 𝑧 } ) = ( 𝑆 ∪ { 𝑍 } ) ) |
| 25 | 24 | fveq2d | ⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) → ( 𝑁 ‘ ( 𝑠 ∪ { 𝑧 } ) ) = ( 𝑁 ‘ ( 𝑆 ∪ { 𝑍 } ) ) ) |
| 26 | 20 25 | eleq12d | ⊢ ( ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) → ( 𝑦 ∈ ( 𝑁 ‘ ( 𝑠 ∪ { 𝑧 } ) ) ↔ 𝑌 ∈ ( 𝑁 ‘ ( 𝑆 ∪ { 𝑍 } ) ) ) ) |
| 27 | 19 26 | rspcdv | ⊢ ( ( ( 𝜑 ∧ 𝑠 = 𝑆 ) ∧ 𝑦 = 𝑌 ) → ( ∀ 𝑧 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁 ‘ 𝑠 ) ) 𝑦 ∈ ( 𝑁 ‘ ( 𝑠 ∪ { 𝑧 } ) ) → 𝑌 ∈ ( 𝑁 ‘ ( 𝑆 ∪ { 𝑍 } ) ) ) ) |
| 28 | 8 27 | rspcimdv | ⊢ ( ( 𝜑 ∧ 𝑠 = 𝑆 ) → ( ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁 ‘ 𝑠 ) ) 𝑦 ∈ ( 𝑁 ‘ ( 𝑠 ∪ { 𝑧 } ) ) → 𝑌 ∈ ( 𝑁 ‘ ( 𝑆 ∪ { 𝑍 } ) ) ) ) |
| 29 | 7 28 | rspcimdv | ⊢ ( 𝜑 → ( ∀ 𝑠 ∈ 𝒫 𝑋 ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ ( ( 𝑁 ‘ ( 𝑠 ∪ { 𝑦 } ) ) ∖ ( 𝑁 ‘ 𝑠 ) ) 𝑦 ∈ ( 𝑁 ‘ ( 𝑠 ∪ { 𝑧 } ) ) → 𝑌 ∈ ( 𝑁 ‘ ( 𝑆 ∪ { 𝑍 } ) ) ) ) |
| 30 | 2 29 | mpd | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝑁 ‘ ( 𝑆 ∪ { 𝑍 } ) ) ) |