This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the function expression for the Moore closure. (Contributed by Stefan O'Rear, 31-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mrcfval.f | ⊢ 𝐹 = ( mrCls ‘ 𝐶 ) | |
| Assertion | mrcfval | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐹 = ( 𝑥 ∈ 𝒫 𝑋 ↦ ∩ { 𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mrcfval.f | ⊢ 𝐹 = ( mrCls ‘ 𝐶 ) | |
| 2 | fvssunirn | ⊢ ( Moore ‘ 𝑋 ) ⊆ ∪ ran Moore | |
| 3 | 2 | sseli | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐶 ∈ ∪ ran Moore ) |
| 4 | unieq | ⊢ ( 𝑐 = 𝐶 → ∪ 𝑐 = ∪ 𝐶 ) | |
| 5 | 4 | pweqd | ⊢ ( 𝑐 = 𝐶 → 𝒫 ∪ 𝑐 = 𝒫 ∪ 𝐶 ) |
| 6 | rabeq | ⊢ ( 𝑐 = 𝐶 → { 𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠 } = { 𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠 } ) | |
| 7 | 6 | inteqd | ⊢ ( 𝑐 = 𝐶 → ∩ { 𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠 } = ∩ { 𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠 } ) |
| 8 | 5 7 | mpteq12dv | ⊢ ( 𝑐 = 𝐶 → ( 𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ { 𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠 } ) = ( 𝑥 ∈ 𝒫 ∪ 𝐶 ↦ ∩ { 𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠 } ) ) |
| 9 | df-mrc | ⊢ mrCls = ( 𝑐 ∈ ∪ ran Moore ↦ ( 𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ { 𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠 } ) ) | |
| 10 | mreunirn | ⊢ ( 𝑐 ∈ ∪ ran Moore ↔ 𝑐 ∈ ( Moore ‘ ∪ 𝑐 ) ) | |
| 11 | mrcflem | ⊢ ( 𝑐 ∈ ( Moore ‘ ∪ 𝑐 ) → ( 𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ { 𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠 } ) : 𝒫 ∪ 𝑐 ⟶ 𝑐 ) | |
| 12 | 10 11 | sylbi | ⊢ ( 𝑐 ∈ ∪ ran Moore → ( 𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ { 𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠 } ) : 𝒫 ∪ 𝑐 ⟶ 𝑐 ) |
| 13 | fssxp | ⊢ ( ( 𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ { 𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠 } ) : 𝒫 ∪ 𝑐 ⟶ 𝑐 → ( 𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ { 𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠 } ) ⊆ ( 𝒫 ∪ 𝑐 × 𝑐 ) ) | |
| 14 | 12 13 | syl | ⊢ ( 𝑐 ∈ ∪ ran Moore → ( 𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ { 𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠 } ) ⊆ ( 𝒫 ∪ 𝑐 × 𝑐 ) ) |
| 15 | vuniex | ⊢ ∪ 𝑐 ∈ V | |
| 16 | 15 | pwex | ⊢ 𝒫 ∪ 𝑐 ∈ V |
| 17 | vex | ⊢ 𝑐 ∈ V | |
| 18 | 16 17 | xpex | ⊢ ( 𝒫 ∪ 𝑐 × 𝑐 ) ∈ V |
| 19 | ssexg | ⊢ ( ( ( 𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ { 𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠 } ) ⊆ ( 𝒫 ∪ 𝑐 × 𝑐 ) ∧ ( 𝒫 ∪ 𝑐 × 𝑐 ) ∈ V ) → ( 𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ { 𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠 } ) ∈ V ) | |
| 20 | 14 18 19 | sylancl | ⊢ ( 𝑐 ∈ ∪ ran Moore → ( 𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ { 𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠 } ) ∈ V ) |
| 21 | 8 9 20 | fvmpt3 | ⊢ ( 𝐶 ∈ ∪ ran Moore → ( mrCls ‘ 𝐶 ) = ( 𝑥 ∈ 𝒫 ∪ 𝐶 ↦ ∩ { 𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠 } ) ) |
| 22 | 3 21 | syl | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( mrCls ‘ 𝐶 ) = ( 𝑥 ∈ 𝒫 ∪ 𝐶 ↦ ∩ { 𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠 } ) ) |
| 23 | mreuni | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ∪ 𝐶 = 𝑋 ) | |
| 24 | 23 | pweqd | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝒫 ∪ 𝐶 = 𝒫 𝑋 ) |
| 25 | 24 | mpteq1d | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( 𝑥 ∈ 𝒫 ∪ 𝐶 ↦ ∩ { 𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠 } ) = ( 𝑥 ∈ 𝒫 𝑋 ↦ ∩ { 𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠 } ) ) |
| 26 | 22 25 | eqtrd | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( mrCls ‘ 𝐶 ) = ( 𝑥 ∈ 𝒫 𝑋 ↦ ∩ { 𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠 } ) ) |
| 27 | 1 26 | eqtrid | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐹 = ( 𝑥 ∈ 𝒫 𝑋 ↦ ∩ { 𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠 } ) ) |