This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Idempotence of closure under a pair union. (Contributed by Stefan O'Rear, 31-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mrcfval.f | ⊢ 𝐹 = ( mrCls ‘ 𝐶 ) | |
| Assertion | mrcun | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑋 ∧ 𝑉 ⊆ 𝑋 ) → ( 𝐹 ‘ ( 𝑈 ∪ 𝑉 ) ) = ( 𝐹 ‘ ( ( 𝐹 ‘ 𝑈 ) ∪ ( 𝐹 ‘ 𝑉 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mrcfval.f | ⊢ 𝐹 = ( mrCls ‘ 𝐶 ) | |
| 2 | simp1 | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑋 ∧ 𝑉 ⊆ 𝑋 ) → 𝐶 ∈ ( Moore ‘ 𝑋 ) ) | |
| 3 | mre1cl | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝑋 ∈ 𝐶 ) | |
| 4 | elpw2g | ⊢ ( 𝑋 ∈ 𝐶 → ( 𝑈 ∈ 𝒫 𝑋 ↔ 𝑈 ⊆ 𝑋 ) ) | |
| 5 | 3 4 | syl | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( 𝑈 ∈ 𝒫 𝑋 ↔ 𝑈 ⊆ 𝑋 ) ) |
| 6 | 5 | biimpar | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑋 ) → 𝑈 ∈ 𝒫 𝑋 ) |
| 7 | 6 | 3adant3 | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑋 ∧ 𝑉 ⊆ 𝑋 ) → 𝑈 ∈ 𝒫 𝑋 ) |
| 8 | elpw2g | ⊢ ( 𝑋 ∈ 𝐶 → ( 𝑉 ∈ 𝒫 𝑋 ↔ 𝑉 ⊆ 𝑋 ) ) | |
| 9 | 3 8 | syl | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( 𝑉 ∈ 𝒫 𝑋 ↔ 𝑉 ⊆ 𝑋 ) ) |
| 10 | 9 | biimpar | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑉 ⊆ 𝑋 ) → 𝑉 ∈ 𝒫 𝑋 ) |
| 11 | 10 | 3adant2 | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑋 ∧ 𝑉 ⊆ 𝑋 ) → 𝑉 ∈ 𝒫 𝑋 ) |
| 12 | 7 11 | prssd | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑋 ∧ 𝑉 ⊆ 𝑋 ) → { 𝑈 , 𝑉 } ⊆ 𝒫 𝑋 ) |
| 13 | 1 | mrcuni | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ { 𝑈 , 𝑉 } ⊆ 𝒫 𝑋 ) → ( 𝐹 ‘ ∪ { 𝑈 , 𝑉 } ) = ( 𝐹 ‘ ∪ ( 𝐹 “ { 𝑈 , 𝑉 } ) ) ) |
| 14 | 2 12 13 | syl2anc | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑋 ∧ 𝑉 ⊆ 𝑋 ) → ( 𝐹 ‘ ∪ { 𝑈 , 𝑉 } ) = ( 𝐹 ‘ ∪ ( 𝐹 “ { 𝑈 , 𝑉 } ) ) ) |
| 15 | uniprg | ⊢ ( ( 𝑈 ∈ 𝒫 𝑋 ∧ 𝑉 ∈ 𝒫 𝑋 ) → ∪ { 𝑈 , 𝑉 } = ( 𝑈 ∪ 𝑉 ) ) | |
| 16 | 7 11 15 | syl2anc | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑋 ∧ 𝑉 ⊆ 𝑋 ) → ∪ { 𝑈 , 𝑉 } = ( 𝑈 ∪ 𝑉 ) ) |
| 17 | 16 | fveq2d | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑋 ∧ 𝑉 ⊆ 𝑋 ) → ( 𝐹 ‘ ∪ { 𝑈 , 𝑉 } ) = ( 𝐹 ‘ ( 𝑈 ∪ 𝑉 ) ) ) |
| 18 | 1 | mrcf | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐹 : 𝒫 𝑋 ⟶ 𝐶 ) |
| 19 | 18 | ffnd | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐹 Fn 𝒫 𝑋 ) |
| 20 | 19 | 3ad2ant1 | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑋 ∧ 𝑉 ⊆ 𝑋 ) → 𝐹 Fn 𝒫 𝑋 ) |
| 21 | fnimapr | ⊢ ( ( 𝐹 Fn 𝒫 𝑋 ∧ 𝑈 ∈ 𝒫 𝑋 ∧ 𝑉 ∈ 𝒫 𝑋 ) → ( 𝐹 “ { 𝑈 , 𝑉 } ) = { ( 𝐹 ‘ 𝑈 ) , ( 𝐹 ‘ 𝑉 ) } ) | |
| 22 | 20 7 11 21 | syl3anc | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑋 ∧ 𝑉 ⊆ 𝑋 ) → ( 𝐹 “ { 𝑈 , 𝑉 } ) = { ( 𝐹 ‘ 𝑈 ) , ( 𝐹 ‘ 𝑉 ) } ) |
| 23 | 22 | unieqd | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑋 ∧ 𝑉 ⊆ 𝑋 ) → ∪ ( 𝐹 “ { 𝑈 , 𝑉 } ) = ∪ { ( 𝐹 ‘ 𝑈 ) , ( 𝐹 ‘ 𝑉 ) } ) |
| 24 | fvex | ⊢ ( 𝐹 ‘ 𝑈 ) ∈ V | |
| 25 | fvex | ⊢ ( 𝐹 ‘ 𝑉 ) ∈ V | |
| 26 | 24 25 | unipr | ⊢ ∪ { ( 𝐹 ‘ 𝑈 ) , ( 𝐹 ‘ 𝑉 ) } = ( ( 𝐹 ‘ 𝑈 ) ∪ ( 𝐹 ‘ 𝑉 ) ) |
| 27 | 23 26 | eqtrdi | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑋 ∧ 𝑉 ⊆ 𝑋 ) → ∪ ( 𝐹 “ { 𝑈 , 𝑉 } ) = ( ( 𝐹 ‘ 𝑈 ) ∪ ( 𝐹 ‘ 𝑉 ) ) ) |
| 28 | 27 | fveq2d | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑋 ∧ 𝑉 ⊆ 𝑋 ) → ( 𝐹 ‘ ∪ ( 𝐹 “ { 𝑈 , 𝑉 } ) ) = ( 𝐹 ‘ ( ( 𝐹 ‘ 𝑈 ) ∪ ( 𝐹 ‘ 𝑉 ) ) ) ) |
| 29 | 14 17 28 | 3eqtr3d | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑋 ∧ 𝑉 ⊆ 𝑋 ) → ( 𝐹 ‘ ( 𝑈 ∪ 𝑉 ) ) = ( 𝐹 ‘ ( ( 𝐹 ‘ 𝑈 ) ∪ ( 𝐹 ‘ 𝑉 ) ) ) ) |