This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Idempotence of closure under a general union. (Contributed by Stefan O'Rear, 31-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mrcfval.f | ⊢ 𝐹 = ( mrCls ‘ 𝐶 ) | |
| Assertion | mrcuni | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝒫 𝑋 ) → ( 𝐹 ‘ ∪ 𝑈 ) = ( 𝐹 ‘ ∪ ( 𝐹 “ 𝑈 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mrcfval.f | ⊢ 𝐹 = ( mrCls ‘ 𝐶 ) | |
| 2 | simpl | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝒫 𝑋 ) → 𝐶 ∈ ( Moore ‘ 𝑋 ) ) | |
| 3 | simpll | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝒫 𝑋 ) ∧ 𝑠 ∈ 𝑈 ) → 𝐶 ∈ ( Moore ‘ 𝑋 ) ) | |
| 4 | ssel2 | ⊢ ( ( 𝑈 ⊆ 𝒫 𝑋 ∧ 𝑠 ∈ 𝑈 ) → 𝑠 ∈ 𝒫 𝑋 ) | |
| 5 | 4 | elpwid | ⊢ ( ( 𝑈 ⊆ 𝒫 𝑋 ∧ 𝑠 ∈ 𝑈 ) → 𝑠 ⊆ 𝑋 ) |
| 6 | 5 | adantll | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝒫 𝑋 ) ∧ 𝑠 ∈ 𝑈 ) → 𝑠 ⊆ 𝑋 ) |
| 7 | 1 | mrcssid | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑠 ⊆ 𝑋 ) → 𝑠 ⊆ ( 𝐹 ‘ 𝑠 ) ) |
| 8 | 3 6 7 | syl2anc | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝒫 𝑋 ) ∧ 𝑠 ∈ 𝑈 ) → 𝑠 ⊆ ( 𝐹 ‘ 𝑠 ) ) |
| 9 | 1 | mrcf | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐹 : 𝒫 𝑋 ⟶ 𝐶 ) |
| 10 | 9 | ffund | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → Fun 𝐹 ) |
| 11 | 10 | adantr | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝒫 𝑋 ) → Fun 𝐹 ) |
| 12 | 9 | fdmd | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → dom 𝐹 = 𝒫 𝑋 ) |
| 13 | 12 | sseq2d | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( 𝑈 ⊆ dom 𝐹 ↔ 𝑈 ⊆ 𝒫 𝑋 ) ) |
| 14 | 13 | biimpar | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝒫 𝑋 ) → 𝑈 ⊆ dom 𝐹 ) |
| 15 | funfvima2 | ⊢ ( ( Fun 𝐹 ∧ 𝑈 ⊆ dom 𝐹 ) → ( 𝑠 ∈ 𝑈 → ( 𝐹 ‘ 𝑠 ) ∈ ( 𝐹 “ 𝑈 ) ) ) | |
| 16 | 11 14 15 | syl2anc | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝒫 𝑋 ) → ( 𝑠 ∈ 𝑈 → ( 𝐹 ‘ 𝑠 ) ∈ ( 𝐹 “ 𝑈 ) ) ) |
| 17 | 16 | imp | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝒫 𝑋 ) ∧ 𝑠 ∈ 𝑈 ) → ( 𝐹 ‘ 𝑠 ) ∈ ( 𝐹 “ 𝑈 ) ) |
| 18 | elssuni | ⊢ ( ( 𝐹 ‘ 𝑠 ) ∈ ( 𝐹 “ 𝑈 ) → ( 𝐹 ‘ 𝑠 ) ⊆ ∪ ( 𝐹 “ 𝑈 ) ) | |
| 19 | 17 18 | syl | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝒫 𝑋 ) ∧ 𝑠 ∈ 𝑈 ) → ( 𝐹 ‘ 𝑠 ) ⊆ ∪ ( 𝐹 “ 𝑈 ) ) |
| 20 | 8 19 | sstrd | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝒫 𝑋 ) ∧ 𝑠 ∈ 𝑈 ) → 𝑠 ⊆ ∪ ( 𝐹 “ 𝑈 ) ) |
| 21 | 20 | ralrimiva | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝒫 𝑋 ) → ∀ 𝑠 ∈ 𝑈 𝑠 ⊆ ∪ ( 𝐹 “ 𝑈 ) ) |
| 22 | unissb | ⊢ ( ∪ 𝑈 ⊆ ∪ ( 𝐹 “ 𝑈 ) ↔ ∀ 𝑠 ∈ 𝑈 𝑠 ⊆ ∪ ( 𝐹 “ 𝑈 ) ) | |
| 23 | 21 22 | sylibr | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝒫 𝑋 ) → ∪ 𝑈 ⊆ ∪ ( 𝐹 “ 𝑈 ) ) |
| 24 | 1 | mrcssv | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) ⊆ 𝑋 ) |
| 25 | 24 | adantr | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝒫 𝑋 ) → ( 𝐹 ‘ 𝑥 ) ⊆ 𝑋 ) |
| 26 | 25 | ralrimivw | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝒫 𝑋 ) → ∀ 𝑥 ∈ 𝑈 ( 𝐹 ‘ 𝑥 ) ⊆ 𝑋 ) |
| 27 | 9 | ffnd | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐹 Fn 𝒫 𝑋 ) |
| 28 | sseq1 | ⊢ ( 𝑠 = ( 𝐹 ‘ 𝑥 ) → ( 𝑠 ⊆ 𝑋 ↔ ( 𝐹 ‘ 𝑥 ) ⊆ 𝑋 ) ) | |
| 29 | 28 | ralima | ⊢ ( ( 𝐹 Fn 𝒫 𝑋 ∧ 𝑈 ⊆ 𝒫 𝑋 ) → ( ∀ 𝑠 ∈ ( 𝐹 “ 𝑈 ) 𝑠 ⊆ 𝑋 ↔ ∀ 𝑥 ∈ 𝑈 ( 𝐹 ‘ 𝑥 ) ⊆ 𝑋 ) ) |
| 30 | 27 29 | sylan | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝒫 𝑋 ) → ( ∀ 𝑠 ∈ ( 𝐹 “ 𝑈 ) 𝑠 ⊆ 𝑋 ↔ ∀ 𝑥 ∈ 𝑈 ( 𝐹 ‘ 𝑥 ) ⊆ 𝑋 ) ) |
| 31 | 26 30 | mpbird | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝒫 𝑋 ) → ∀ 𝑠 ∈ ( 𝐹 “ 𝑈 ) 𝑠 ⊆ 𝑋 ) |
| 32 | unissb | ⊢ ( ∪ ( 𝐹 “ 𝑈 ) ⊆ 𝑋 ↔ ∀ 𝑠 ∈ ( 𝐹 “ 𝑈 ) 𝑠 ⊆ 𝑋 ) | |
| 33 | 31 32 | sylibr | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝒫 𝑋 ) → ∪ ( 𝐹 “ 𝑈 ) ⊆ 𝑋 ) |
| 34 | 1 | mrcss | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∪ 𝑈 ⊆ ∪ ( 𝐹 “ 𝑈 ) ∧ ∪ ( 𝐹 “ 𝑈 ) ⊆ 𝑋 ) → ( 𝐹 ‘ ∪ 𝑈 ) ⊆ ( 𝐹 ‘ ∪ ( 𝐹 “ 𝑈 ) ) ) |
| 35 | 2 23 33 34 | syl3anc | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝒫 𝑋 ) → ( 𝐹 ‘ ∪ 𝑈 ) ⊆ ( 𝐹 ‘ ∪ ( 𝐹 “ 𝑈 ) ) ) |
| 36 | simpll | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝒫 𝑋 ) ∧ 𝑥 ∈ 𝑈 ) → 𝐶 ∈ ( Moore ‘ 𝑋 ) ) | |
| 37 | elssuni | ⊢ ( 𝑥 ∈ 𝑈 → 𝑥 ⊆ ∪ 𝑈 ) | |
| 38 | 37 | adantl | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝒫 𝑋 ) ∧ 𝑥 ∈ 𝑈 ) → 𝑥 ⊆ ∪ 𝑈 ) |
| 39 | sspwuni | ⊢ ( 𝑈 ⊆ 𝒫 𝑋 ↔ ∪ 𝑈 ⊆ 𝑋 ) | |
| 40 | 39 | biimpi | ⊢ ( 𝑈 ⊆ 𝒫 𝑋 → ∪ 𝑈 ⊆ 𝑋 ) |
| 41 | 40 | adantl | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝒫 𝑋 ) → ∪ 𝑈 ⊆ 𝑋 ) |
| 42 | 41 | adantr | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝒫 𝑋 ) ∧ 𝑥 ∈ 𝑈 ) → ∪ 𝑈 ⊆ 𝑋 ) |
| 43 | 1 | mrcss | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ ∪ 𝑈 ∧ ∪ 𝑈 ⊆ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) ⊆ ( 𝐹 ‘ ∪ 𝑈 ) ) |
| 44 | 36 38 42 43 | syl3anc | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝒫 𝑋 ) ∧ 𝑥 ∈ 𝑈 ) → ( 𝐹 ‘ 𝑥 ) ⊆ ( 𝐹 ‘ ∪ 𝑈 ) ) |
| 45 | 44 | ralrimiva | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝒫 𝑋 ) → ∀ 𝑥 ∈ 𝑈 ( 𝐹 ‘ 𝑥 ) ⊆ ( 𝐹 ‘ ∪ 𝑈 ) ) |
| 46 | sseq1 | ⊢ ( 𝑠 = ( 𝐹 ‘ 𝑥 ) → ( 𝑠 ⊆ ( 𝐹 ‘ ∪ 𝑈 ) ↔ ( 𝐹 ‘ 𝑥 ) ⊆ ( 𝐹 ‘ ∪ 𝑈 ) ) ) | |
| 47 | 46 | ralima | ⊢ ( ( 𝐹 Fn 𝒫 𝑋 ∧ 𝑈 ⊆ 𝒫 𝑋 ) → ( ∀ 𝑠 ∈ ( 𝐹 “ 𝑈 ) 𝑠 ⊆ ( 𝐹 ‘ ∪ 𝑈 ) ↔ ∀ 𝑥 ∈ 𝑈 ( 𝐹 ‘ 𝑥 ) ⊆ ( 𝐹 ‘ ∪ 𝑈 ) ) ) |
| 48 | 27 47 | sylan | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝒫 𝑋 ) → ( ∀ 𝑠 ∈ ( 𝐹 “ 𝑈 ) 𝑠 ⊆ ( 𝐹 ‘ ∪ 𝑈 ) ↔ ∀ 𝑥 ∈ 𝑈 ( 𝐹 ‘ 𝑥 ) ⊆ ( 𝐹 ‘ ∪ 𝑈 ) ) ) |
| 49 | 45 48 | mpbird | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝒫 𝑋 ) → ∀ 𝑠 ∈ ( 𝐹 “ 𝑈 ) 𝑠 ⊆ ( 𝐹 ‘ ∪ 𝑈 ) ) |
| 50 | unissb | ⊢ ( ∪ ( 𝐹 “ 𝑈 ) ⊆ ( 𝐹 ‘ ∪ 𝑈 ) ↔ ∀ 𝑠 ∈ ( 𝐹 “ 𝑈 ) 𝑠 ⊆ ( 𝐹 ‘ ∪ 𝑈 ) ) | |
| 51 | 49 50 | sylibr | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝒫 𝑋 ) → ∪ ( 𝐹 “ 𝑈 ) ⊆ ( 𝐹 ‘ ∪ 𝑈 ) ) |
| 52 | 1 | mrcssv | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( 𝐹 ‘ ∪ 𝑈 ) ⊆ 𝑋 ) |
| 53 | 52 | adantr | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝒫 𝑋 ) → ( 𝐹 ‘ ∪ 𝑈 ) ⊆ 𝑋 ) |
| 54 | 1 | mrcss | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∪ ( 𝐹 “ 𝑈 ) ⊆ ( 𝐹 ‘ ∪ 𝑈 ) ∧ ( 𝐹 ‘ ∪ 𝑈 ) ⊆ 𝑋 ) → ( 𝐹 ‘ ∪ ( 𝐹 “ 𝑈 ) ) ⊆ ( 𝐹 ‘ ( 𝐹 ‘ ∪ 𝑈 ) ) ) |
| 55 | 2 51 53 54 | syl3anc | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝒫 𝑋 ) → ( 𝐹 ‘ ∪ ( 𝐹 “ 𝑈 ) ) ⊆ ( 𝐹 ‘ ( 𝐹 ‘ ∪ 𝑈 ) ) ) |
| 56 | 1 | mrcidm | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ ∪ 𝑈 ⊆ 𝑋 ) → ( 𝐹 ‘ ( 𝐹 ‘ ∪ 𝑈 ) ) = ( 𝐹 ‘ ∪ 𝑈 ) ) |
| 57 | 2 41 56 | syl2anc | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝒫 𝑋 ) → ( 𝐹 ‘ ( 𝐹 ‘ ∪ 𝑈 ) ) = ( 𝐹 ‘ ∪ 𝑈 ) ) |
| 58 | 55 57 | sseqtrd | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝒫 𝑋 ) → ( 𝐹 ‘ ∪ ( 𝐹 “ 𝑈 ) ) ⊆ ( 𝐹 ‘ ∪ 𝑈 ) ) |
| 59 | 35 58 | eqssd | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝒫 𝑋 ) → ( 𝐹 ‘ ∪ 𝑈 ) = ( 𝐹 ‘ ∪ ( 𝐹 “ 𝑈 ) ) ) |