This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Idempotence of closure under a pair union. (Contributed by Stefan O'Rear, 31-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mrcfval.f | |- F = ( mrCls ` C ) |
|
| Assertion | mrcun | |- ( ( C e. ( Moore ` X ) /\ U C_ X /\ V C_ X ) -> ( F ` ( U u. V ) ) = ( F ` ( ( F ` U ) u. ( F ` V ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mrcfval.f | |- F = ( mrCls ` C ) |
|
| 2 | simp1 | |- ( ( C e. ( Moore ` X ) /\ U C_ X /\ V C_ X ) -> C e. ( Moore ` X ) ) |
|
| 3 | mre1cl | |- ( C e. ( Moore ` X ) -> X e. C ) |
|
| 4 | elpw2g | |- ( X e. C -> ( U e. ~P X <-> U C_ X ) ) |
|
| 5 | 3 4 | syl | |- ( C e. ( Moore ` X ) -> ( U e. ~P X <-> U C_ X ) ) |
| 6 | 5 | biimpar | |- ( ( C e. ( Moore ` X ) /\ U C_ X ) -> U e. ~P X ) |
| 7 | 6 | 3adant3 | |- ( ( C e. ( Moore ` X ) /\ U C_ X /\ V C_ X ) -> U e. ~P X ) |
| 8 | elpw2g | |- ( X e. C -> ( V e. ~P X <-> V C_ X ) ) |
|
| 9 | 3 8 | syl | |- ( C e. ( Moore ` X ) -> ( V e. ~P X <-> V C_ X ) ) |
| 10 | 9 | biimpar | |- ( ( C e. ( Moore ` X ) /\ V C_ X ) -> V e. ~P X ) |
| 11 | 10 | 3adant2 | |- ( ( C e. ( Moore ` X ) /\ U C_ X /\ V C_ X ) -> V e. ~P X ) |
| 12 | 7 11 | prssd | |- ( ( C e. ( Moore ` X ) /\ U C_ X /\ V C_ X ) -> { U , V } C_ ~P X ) |
| 13 | 1 | mrcuni | |- ( ( C e. ( Moore ` X ) /\ { U , V } C_ ~P X ) -> ( F ` U. { U , V } ) = ( F ` U. ( F " { U , V } ) ) ) |
| 14 | 2 12 13 | syl2anc | |- ( ( C e. ( Moore ` X ) /\ U C_ X /\ V C_ X ) -> ( F ` U. { U , V } ) = ( F ` U. ( F " { U , V } ) ) ) |
| 15 | uniprg | |- ( ( U e. ~P X /\ V e. ~P X ) -> U. { U , V } = ( U u. V ) ) |
|
| 16 | 7 11 15 | syl2anc | |- ( ( C e. ( Moore ` X ) /\ U C_ X /\ V C_ X ) -> U. { U , V } = ( U u. V ) ) |
| 17 | 16 | fveq2d | |- ( ( C e. ( Moore ` X ) /\ U C_ X /\ V C_ X ) -> ( F ` U. { U , V } ) = ( F ` ( U u. V ) ) ) |
| 18 | 1 | mrcf | |- ( C e. ( Moore ` X ) -> F : ~P X --> C ) |
| 19 | 18 | ffnd | |- ( C e. ( Moore ` X ) -> F Fn ~P X ) |
| 20 | 19 | 3ad2ant1 | |- ( ( C e. ( Moore ` X ) /\ U C_ X /\ V C_ X ) -> F Fn ~P X ) |
| 21 | fnimapr | |- ( ( F Fn ~P X /\ U e. ~P X /\ V e. ~P X ) -> ( F " { U , V } ) = { ( F ` U ) , ( F ` V ) } ) |
|
| 22 | 20 7 11 21 | syl3anc | |- ( ( C e. ( Moore ` X ) /\ U C_ X /\ V C_ X ) -> ( F " { U , V } ) = { ( F ` U ) , ( F ` V ) } ) |
| 23 | 22 | unieqd | |- ( ( C e. ( Moore ` X ) /\ U C_ X /\ V C_ X ) -> U. ( F " { U , V } ) = U. { ( F ` U ) , ( F ` V ) } ) |
| 24 | fvex | |- ( F ` U ) e. _V |
|
| 25 | fvex | |- ( F ` V ) e. _V |
|
| 26 | 24 25 | unipr | |- U. { ( F ` U ) , ( F ` V ) } = ( ( F ` U ) u. ( F ` V ) ) |
| 27 | 23 26 | eqtrdi | |- ( ( C e. ( Moore ` X ) /\ U C_ X /\ V C_ X ) -> U. ( F " { U , V } ) = ( ( F ` U ) u. ( F ` V ) ) ) |
| 28 | 27 | fveq2d | |- ( ( C e. ( Moore ` X ) /\ U C_ X /\ V C_ X ) -> ( F ` U. ( F " { U , V } ) ) = ( F ` ( ( F ` U ) u. ( F ` V ) ) ) ) |
| 29 | 14 17 28 | 3eqtr3d | |- ( ( C e. ( Moore ` X ) /\ U C_ X /\ V C_ X ) -> ( F ` ( U u. V ) ) = ( F ` ( ( F ` U ) u. ( F ` V ) ) ) ) |