This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The span of the singleton of a subspace member is included in the subspace. ( spansnss analog.) (Contributed by NM, 9-Apr-2014) (Revised by Mario Carneiro, 4-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspsnss.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| lspsnss.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| Assertion | lspsnss | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈 ) → ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspsnss.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| 2 | lspsnss.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 3 | snssi | ⊢ ( 𝑋 ∈ 𝑈 → { 𝑋 } ⊆ 𝑈 ) | |
| 4 | 1 2 | lspssp | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ { 𝑋 } ⊆ 𝑈 ) → ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑈 ) |
| 5 | 3 4 | syl3an3 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈 ) → ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑈 ) |