This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of an operation given by a maps-to rule is the empty set if the arguments are not contained in the base sets of the rule. (Contributed by Alexander van der Vekens, 12-Oct-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mpondm0.f | |- F = ( x e. X , y e. Y |-> C ) |
|
| Assertion | mpondm0 | |- ( -. ( V e. X /\ W e. Y ) -> ( V F W ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpondm0.f | |- F = ( x e. X , y e. Y |-> C ) |
|
| 2 | df-mpo | |- ( x e. X , y e. Y |-> C ) = { <. <. x , y >. , z >. | ( ( x e. X /\ y e. Y ) /\ z = C ) } |
|
| 3 | 1 2 | eqtri | |- F = { <. <. x , y >. , z >. | ( ( x e. X /\ y e. Y ) /\ z = C ) } |
| 4 | 3 | dmeqi | |- dom F = dom { <. <. x , y >. , z >. | ( ( x e. X /\ y e. Y ) /\ z = C ) } |
| 5 | dmoprabss | |- dom { <. <. x , y >. , z >. | ( ( x e. X /\ y e. Y ) /\ z = C ) } C_ ( X X. Y ) |
|
| 6 | 4 5 | eqsstri | |- dom F C_ ( X X. Y ) |
| 7 | nssdmovg | |- ( ( dom F C_ ( X X. Y ) /\ -. ( V e. X /\ W e. Y ) ) -> ( V F W ) = (/) ) |
|
| 8 | 6 7 | mpan | |- ( -. ( V e. X /\ W e. Y ) -> ( V F W ) = (/) ) |