This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of an operation outside its domain. (Contributed by Alexander van der Vekens, 7-Sep-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nssdmovg | ⊢ ( ( dom 𝐹 ⊆ ( 𝑅 × 𝑆 ) ∧ ¬ ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ) → ( 𝐴 𝐹 𝐵 ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov | ⊢ ( 𝐴 𝐹 𝐵 ) = ( 𝐹 ‘ 〈 𝐴 , 𝐵 〉 ) | |
| 2 | ssel2 | ⊢ ( ( dom 𝐹 ⊆ ( 𝑅 × 𝑆 ) ∧ 〈 𝐴 , 𝐵 〉 ∈ dom 𝐹 ) → 〈 𝐴 , 𝐵 〉 ∈ ( 𝑅 × 𝑆 ) ) | |
| 3 | opelxp | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝑅 × 𝑆 ) ↔ ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ) | |
| 4 | 2 3 | sylib | ⊢ ( ( dom 𝐹 ⊆ ( 𝑅 × 𝑆 ) ∧ 〈 𝐴 , 𝐵 〉 ∈ dom 𝐹 ) → ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ) |
| 5 | 4 | stoic1a | ⊢ ( ( dom 𝐹 ⊆ ( 𝑅 × 𝑆 ) ∧ ¬ ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ) → ¬ 〈 𝐴 , 𝐵 〉 ∈ dom 𝐹 ) |
| 6 | ndmfv | ⊢ ( ¬ 〈 𝐴 , 𝐵 〉 ∈ dom 𝐹 → ( 𝐹 ‘ 〈 𝐴 , 𝐵 〉 ) = ∅ ) | |
| 7 | 5 6 | syl | ⊢ ( ( dom 𝐹 ⊆ ( 𝑅 × 𝑆 ) ∧ ¬ ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ) → ( 𝐹 ‘ 〈 𝐴 , 𝐵 〉 ) = ∅ ) |
| 8 | 1 7 | eqtrid | ⊢ ( ( dom 𝐹 ⊆ ( 𝑅 × 𝑆 ) ∧ ¬ ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ) → ( 𝐴 𝐹 𝐵 ) = ∅ ) |