This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The negative function on multivariate polynomials. (Contributed by SN, 25-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mplneg.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| mplneg.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| mplneg.n | ⊢ 𝑁 = ( invg ‘ 𝑅 ) | ||
| mplneg.m | ⊢ 𝑀 = ( invg ‘ 𝑃 ) | ||
| mplneg.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| mplneg.r | ⊢ ( 𝜑 → 𝑅 ∈ Grp ) | ||
| mplneg.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| Assertion | mplneg | ⊢ ( 𝜑 → ( 𝑀 ‘ 𝑋 ) = ( 𝑁 ∘ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplneg.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| 2 | mplneg.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 3 | mplneg.n | ⊢ 𝑁 = ( invg ‘ 𝑅 ) | |
| 4 | mplneg.m | ⊢ 𝑀 = ( invg ‘ 𝑃 ) | |
| 5 | mplneg.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 6 | mplneg.r | ⊢ ( 𝜑 → 𝑅 ∈ Grp ) | |
| 7 | mplneg.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 8 | eqid | ⊢ ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 ) | |
| 9 | 8 1 2 5 6 | mplsubg | ⊢ ( 𝜑 → 𝐵 ∈ ( SubGrp ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
| 10 | 1 8 2 | mplval2 | ⊢ 𝑃 = ( ( 𝐼 mPwSer 𝑅 ) ↾s 𝐵 ) |
| 11 | eqid | ⊢ ( invg ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( invg ‘ ( 𝐼 mPwSer 𝑅 ) ) | |
| 12 | 10 11 4 | subginv | ⊢ ( ( 𝐵 ∈ ( SubGrp ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ 𝑋 ∈ 𝐵 ) → ( ( invg ‘ ( 𝐼 mPwSer 𝑅 ) ) ‘ 𝑋 ) = ( 𝑀 ‘ 𝑋 ) ) |
| 13 | 9 7 12 | syl2anc | ⊢ ( 𝜑 → ( ( invg ‘ ( 𝐼 mPwSer 𝑅 ) ) ‘ 𝑋 ) = ( 𝑀 ‘ 𝑋 ) ) |
| 14 | eqid | ⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 15 | eqid | ⊢ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) | |
| 16 | 1 8 2 15 | mplbasss | ⊢ 𝐵 ⊆ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) |
| 17 | 16 | sseli | ⊢ ( 𝑋 ∈ 𝐵 → 𝑋 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
| 18 | 7 17 | syl | ⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
| 19 | 8 5 6 14 3 15 11 18 | psrneg | ⊢ ( 𝜑 → ( ( invg ‘ ( 𝐼 mPwSer 𝑅 ) ) ‘ 𝑋 ) = ( 𝑁 ∘ 𝑋 ) ) |
| 20 | 13 19 | eqtr3d | ⊢ ( 𝜑 → ( 𝑀 ‘ 𝑋 ) = ( 𝑁 ∘ 𝑋 ) ) |