This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The negative function on multivariate polynomials. (Contributed by SN, 25-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mplneg.p | |- P = ( I mPoly R ) |
|
| mplneg.b | |- B = ( Base ` P ) |
||
| mplneg.n | |- N = ( invg ` R ) |
||
| mplneg.m | |- M = ( invg ` P ) |
||
| mplneg.i | |- ( ph -> I e. V ) |
||
| mplneg.r | |- ( ph -> R e. Grp ) |
||
| mplneg.x | |- ( ph -> X e. B ) |
||
| Assertion | mplneg | |- ( ph -> ( M ` X ) = ( N o. X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplneg.p | |- P = ( I mPoly R ) |
|
| 2 | mplneg.b | |- B = ( Base ` P ) |
|
| 3 | mplneg.n | |- N = ( invg ` R ) |
|
| 4 | mplneg.m | |- M = ( invg ` P ) |
|
| 5 | mplneg.i | |- ( ph -> I e. V ) |
|
| 6 | mplneg.r | |- ( ph -> R e. Grp ) |
|
| 7 | mplneg.x | |- ( ph -> X e. B ) |
|
| 8 | eqid | |- ( I mPwSer R ) = ( I mPwSer R ) |
|
| 9 | 8 1 2 5 6 | mplsubg | |- ( ph -> B e. ( SubGrp ` ( I mPwSer R ) ) ) |
| 10 | 1 8 2 | mplval2 | |- P = ( ( I mPwSer R ) |`s B ) |
| 11 | eqid | |- ( invg ` ( I mPwSer R ) ) = ( invg ` ( I mPwSer R ) ) |
|
| 12 | 10 11 4 | subginv | |- ( ( B e. ( SubGrp ` ( I mPwSer R ) ) /\ X e. B ) -> ( ( invg ` ( I mPwSer R ) ) ` X ) = ( M ` X ) ) |
| 13 | 9 7 12 | syl2anc | |- ( ph -> ( ( invg ` ( I mPwSer R ) ) ` X ) = ( M ` X ) ) |
| 14 | eqid | |- { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
|
| 15 | eqid | |- ( Base ` ( I mPwSer R ) ) = ( Base ` ( I mPwSer R ) ) |
|
| 16 | 1 8 2 15 | mplbasss | |- B C_ ( Base ` ( I mPwSer R ) ) |
| 17 | 16 | sseli | |- ( X e. B -> X e. ( Base ` ( I mPwSer R ) ) ) |
| 18 | 7 17 | syl | |- ( ph -> X e. ( Base ` ( I mPwSer R ) ) ) |
| 19 | 8 5 6 14 3 15 11 18 | psrneg | |- ( ph -> ( ( invg ` ( I mPwSer R ) ) ` X ) = ( N o. X ) ) |
| 20 | 13 19 | eqtr3d | |- ( ph -> ( M ` X ) = ( N o. X ) ) |