This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reverse closure for the set of polynomial functions. (Contributed by Stefan O'Rear, 19-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mpfrcl.q | ⊢ 𝑄 = ran ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) | |
| Assertion | mpfrcl | ⊢ ( 𝑋 ∈ 𝑄 → ( 𝐼 ∈ V ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpfrcl.q | ⊢ 𝑄 = ran ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) | |
| 2 | ne0i | ⊢ ( 𝑋 ∈ ran ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) → ran ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) ≠ ∅ ) | |
| 3 | 2 1 | eleq2s | ⊢ ( 𝑋 ∈ 𝑄 → ran ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) ≠ ∅ ) |
| 4 | rneq | ⊢ ( ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) = ∅ → ran ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) = ran ∅ ) | |
| 5 | rn0 | ⊢ ran ∅ = ∅ | |
| 6 | 4 5 | eqtrdi | ⊢ ( ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) = ∅ → ran ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) = ∅ ) |
| 7 | 6 | necon3i | ⊢ ( ran ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) ≠ ∅ → ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) ≠ ∅ ) |
| 8 | fveq1 | ⊢ ( ( 𝐼 evalSub 𝑆 ) = ∅ → ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) = ( ∅ ‘ 𝑅 ) ) | |
| 9 | 0fv | ⊢ ( ∅ ‘ 𝑅 ) = ∅ | |
| 10 | 8 9 | eqtrdi | ⊢ ( ( 𝐼 evalSub 𝑆 ) = ∅ → ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) = ∅ ) |
| 11 | 10 | necon3i | ⊢ ( ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) ≠ ∅ → ( 𝐼 evalSub 𝑆 ) ≠ ∅ ) |
| 12 | reldmevls | ⊢ Rel dom evalSub | |
| 13 | 12 | ovprc1 | ⊢ ( ¬ 𝐼 ∈ V → ( 𝐼 evalSub 𝑆 ) = ∅ ) |
| 14 | 13 | necon1ai | ⊢ ( ( 𝐼 evalSub 𝑆 ) ≠ ∅ → 𝐼 ∈ V ) |
| 15 | n0 | ⊢ ( ( 𝐼 evalSub 𝑆 ) ≠ ∅ ↔ ∃ 𝑎 𝑎 ∈ ( 𝐼 evalSub 𝑆 ) ) | |
| 16 | df-evls | ⊢ evalSub = ( 𝑖 ∈ V , 𝑠 ∈ CRing ↦ ⦋ ( Base ‘ 𝑠 ) / 𝑏 ⦌ ( 𝑟 ∈ ( SubRing ‘ 𝑠 ) ↦ ⦋ ( 𝑖 mPoly ( 𝑠 ↾s 𝑟 ) ) / 𝑤 ⦌ ( ℩ 𝑓 ∈ ( 𝑤 RingHom ( 𝑠 ↑s ( 𝑏 ↑m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) ) | |
| 17 | 16 | elmpocl2 | ⊢ ( 𝑎 ∈ ( 𝐼 evalSub 𝑆 ) → 𝑆 ∈ CRing ) |
| 18 | 17 | a1d | ⊢ ( 𝑎 ∈ ( 𝐼 evalSub 𝑆 ) → ( 𝐼 ∈ V → 𝑆 ∈ CRing ) ) |
| 19 | 18 | exlimiv | ⊢ ( ∃ 𝑎 𝑎 ∈ ( 𝐼 evalSub 𝑆 ) → ( 𝐼 ∈ V → 𝑆 ∈ CRing ) ) |
| 20 | 15 19 | sylbi | ⊢ ( ( 𝐼 evalSub 𝑆 ) ≠ ∅ → ( 𝐼 ∈ V → 𝑆 ∈ CRing ) ) |
| 21 | 14 20 | jcai | ⊢ ( ( 𝐼 evalSub 𝑆 ) ≠ ∅ → ( 𝐼 ∈ V ∧ 𝑆 ∈ CRing ) ) |
| 22 | 11 21 | syl | ⊢ ( ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) ≠ ∅ → ( 𝐼 ∈ V ∧ 𝑆 ∈ CRing ) ) |
| 23 | fvex | ⊢ ( Base ‘ 𝑠 ) ∈ V | |
| 24 | nfcv | ⊢ Ⅎ 𝑏 ( SubRing ‘ 𝑠 ) | |
| 25 | nfcsb1v | ⊢ Ⅎ 𝑏 ⦋ ( Base ‘ 𝑠 ) / 𝑏 ⦌ ⦋ ( 𝑖 mPoly ( 𝑠 ↾s 𝑟 ) ) / 𝑤 ⦌ ( ℩ 𝑓 ∈ ( 𝑤 RingHom ( 𝑠 ↑s ( 𝑏 ↑m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) | |
| 26 | 24 25 | nfmpt | ⊢ Ⅎ 𝑏 ( 𝑟 ∈ ( SubRing ‘ 𝑠 ) ↦ ⦋ ( Base ‘ 𝑠 ) / 𝑏 ⦌ ⦋ ( 𝑖 mPoly ( 𝑠 ↾s 𝑟 ) ) / 𝑤 ⦌ ( ℩ 𝑓 ∈ ( 𝑤 RingHom ( 𝑠 ↑s ( 𝑏 ↑m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
| 27 | csbeq1a | ⊢ ( 𝑏 = ( Base ‘ 𝑠 ) → ⦋ ( 𝑖 mPoly ( 𝑠 ↾s 𝑟 ) ) / 𝑤 ⦌ ( ℩ 𝑓 ∈ ( 𝑤 RingHom ( 𝑠 ↑s ( 𝑏 ↑m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) = ⦋ ( Base ‘ 𝑠 ) / 𝑏 ⦌ ⦋ ( 𝑖 mPoly ( 𝑠 ↾s 𝑟 ) ) / 𝑤 ⦌ ( ℩ 𝑓 ∈ ( 𝑤 RingHom ( 𝑠 ↑s ( 𝑏 ↑m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) | |
| 28 | 27 | mpteq2dv | ⊢ ( 𝑏 = ( Base ‘ 𝑠 ) → ( 𝑟 ∈ ( SubRing ‘ 𝑠 ) ↦ ⦋ ( 𝑖 mPoly ( 𝑠 ↾s 𝑟 ) ) / 𝑤 ⦌ ( ℩ 𝑓 ∈ ( 𝑤 RingHom ( 𝑠 ↑s ( 𝑏 ↑m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) = ( 𝑟 ∈ ( SubRing ‘ 𝑠 ) ↦ ⦋ ( Base ‘ 𝑠 ) / 𝑏 ⦌ ⦋ ( 𝑖 mPoly ( 𝑠 ↾s 𝑟 ) ) / 𝑤 ⦌ ( ℩ 𝑓 ∈ ( 𝑤 RingHom ( 𝑠 ↑s ( 𝑏 ↑m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) ) |
| 29 | 23 26 28 | csbief | ⊢ ⦋ ( Base ‘ 𝑠 ) / 𝑏 ⦌ ( 𝑟 ∈ ( SubRing ‘ 𝑠 ) ↦ ⦋ ( 𝑖 mPoly ( 𝑠 ↾s 𝑟 ) ) / 𝑤 ⦌ ( ℩ 𝑓 ∈ ( 𝑤 RingHom ( 𝑠 ↑s ( 𝑏 ↑m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) = ( 𝑟 ∈ ( SubRing ‘ 𝑠 ) ↦ ⦋ ( Base ‘ 𝑠 ) / 𝑏 ⦌ ⦋ ( 𝑖 mPoly ( 𝑠 ↾s 𝑟 ) ) / 𝑤 ⦌ ( ℩ 𝑓 ∈ ( 𝑤 RingHom ( 𝑠 ↑s ( 𝑏 ↑m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
| 30 | fveq2 | ⊢ ( 𝑠 = 𝑆 → ( SubRing ‘ 𝑠 ) = ( SubRing ‘ 𝑆 ) ) | |
| 31 | 30 | adantl | ⊢ ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) → ( SubRing ‘ 𝑠 ) = ( SubRing ‘ 𝑆 ) ) |
| 32 | fveq2 | ⊢ ( 𝑠 = 𝑆 → ( Base ‘ 𝑠 ) = ( Base ‘ 𝑆 ) ) | |
| 33 | 32 | adantl | ⊢ ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) → ( Base ‘ 𝑠 ) = ( Base ‘ 𝑆 ) ) |
| 34 | 33 | csbeq1d | ⊢ ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) → ⦋ ( Base ‘ 𝑠 ) / 𝑏 ⦌ ⦋ ( 𝑖 mPoly ( 𝑠 ↾s 𝑟 ) ) / 𝑤 ⦌ ( ℩ 𝑓 ∈ ( 𝑤 RingHom ( 𝑠 ↑s ( 𝑏 ↑m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) = ⦋ ( Base ‘ 𝑆 ) / 𝑏 ⦌ ⦋ ( 𝑖 mPoly ( 𝑠 ↾s 𝑟 ) ) / 𝑤 ⦌ ( ℩ 𝑓 ∈ ( 𝑤 RingHom ( 𝑠 ↑s ( 𝑏 ↑m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
| 35 | id | ⊢ ( 𝑖 = 𝐼 → 𝑖 = 𝐼 ) | |
| 36 | oveq1 | ⊢ ( 𝑠 = 𝑆 → ( 𝑠 ↾s 𝑟 ) = ( 𝑆 ↾s 𝑟 ) ) | |
| 37 | 35 36 | oveqan12d | ⊢ ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) → ( 𝑖 mPoly ( 𝑠 ↾s 𝑟 ) ) = ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) ) |
| 38 | 37 | csbeq1d | ⊢ ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) → ⦋ ( 𝑖 mPoly ( 𝑠 ↾s 𝑟 ) ) / 𝑤 ⦌ ( ℩ 𝑓 ∈ ( 𝑤 RingHom ( 𝑠 ↑s ( 𝑏 ↑m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) = ⦋ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) / 𝑤 ⦌ ( ℩ 𝑓 ∈ ( 𝑤 RingHom ( 𝑠 ↑s ( 𝑏 ↑m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
| 39 | id | ⊢ ( 𝑠 = 𝑆 → 𝑠 = 𝑆 ) | |
| 40 | oveq2 | ⊢ ( 𝑖 = 𝐼 → ( 𝑏 ↑m 𝑖 ) = ( 𝑏 ↑m 𝐼 ) ) | |
| 41 | 39 40 | oveqan12rd | ⊢ ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) → ( 𝑠 ↑s ( 𝑏 ↑m 𝑖 ) ) = ( 𝑆 ↑s ( 𝑏 ↑m 𝐼 ) ) ) |
| 42 | 41 | oveq2d | ⊢ ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) → ( 𝑤 RingHom ( 𝑠 ↑s ( 𝑏 ↑m 𝑖 ) ) ) = ( 𝑤 RingHom ( 𝑆 ↑s ( 𝑏 ↑m 𝐼 ) ) ) ) |
| 43 | 40 | adantr | ⊢ ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) → ( 𝑏 ↑m 𝑖 ) = ( 𝑏 ↑m 𝐼 ) ) |
| 44 | 43 | xpeq1d | ⊢ ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) → ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) = ( ( 𝑏 ↑m 𝐼 ) × { 𝑥 } ) ) |
| 45 | 44 | mpteq2dv | ⊢ ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) → ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝐼 ) × { 𝑥 } ) ) ) |
| 46 | 45 | eqeq2d | ⊢ ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) → ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) ↔ ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝐼 ) × { 𝑥 } ) ) ) ) |
| 47 | 35 36 | oveqan12d | ⊢ ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) → ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) = ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) ) |
| 48 | 47 | coeq2d | ⊢ ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) → ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) = ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) ) ) |
| 49 | simpl | ⊢ ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) → 𝑖 = 𝐼 ) | |
| 50 | 43 | mpteq1d | ⊢ ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) → ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) = ( 𝑔 ∈ ( 𝑏 ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) |
| 51 | 49 50 | mpteq12dv | ⊢ ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) → ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 52 | 48 51 | eqeq12d | ⊢ ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) → ( ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ↔ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
| 53 | 46 52 | anbi12d | ⊢ ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) → ( ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ↔ ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
| 54 | 42 53 | riotaeqbidv | ⊢ ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) → ( ℩ 𝑓 ∈ ( 𝑤 RingHom ( 𝑠 ↑s ( 𝑏 ↑m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) = ( ℩ 𝑓 ∈ ( 𝑤 RingHom ( 𝑆 ↑s ( 𝑏 ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
| 55 | 54 | csbeq2dv | ⊢ ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) → ⦋ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) / 𝑤 ⦌ ( ℩ 𝑓 ∈ ( 𝑤 RingHom ( 𝑠 ↑s ( 𝑏 ↑m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) = ⦋ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) / 𝑤 ⦌ ( ℩ 𝑓 ∈ ( 𝑤 RingHom ( 𝑆 ↑s ( 𝑏 ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
| 56 | 38 55 | eqtrd | ⊢ ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) → ⦋ ( 𝑖 mPoly ( 𝑠 ↾s 𝑟 ) ) / 𝑤 ⦌ ( ℩ 𝑓 ∈ ( 𝑤 RingHom ( 𝑠 ↑s ( 𝑏 ↑m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) = ⦋ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) / 𝑤 ⦌ ( ℩ 𝑓 ∈ ( 𝑤 RingHom ( 𝑆 ↑s ( 𝑏 ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
| 57 | 56 | csbeq2dv | ⊢ ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) → ⦋ ( Base ‘ 𝑆 ) / 𝑏 ⦌ ⦋ ( 𝑖 mPoly ( 𝑠 ↾s 𝑟 ) ) / 𝑤 ⦌ ( ℩ 𝑓 ∈ ( 𝑤 RingHom ( 𝑠 ↑s ( 𝑏 ↑m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) = ⦋ ( Base ‘ 𝑆 ) / 𝑏 ⦌ ⦋ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) / 𝑤 ⦌ ( ℩ 𝑓 ∈ ( 𝑤 RingHom ( 𝑆 ↑s ( 𝑏 ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
| 58 | 34 57 | eqtrd | ⊢ ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) → ⦋ ( Base ‘ 𝑠 ) / 𝑏 ⦌ ⦋ ( 𝑖 mPoly ( 𝑠 ↾s 𝑟 ) ) / 𝑤 ⦌ ( ℩ 𝑓 ∈ ( 𝑤 RingHom ( 𝑠 ↑s ( 𝑏 ↑m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) = ⦋ ( Base ‘ 𝑆 ) / 𝑏 ⦌ ⦋ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) / 𝑤 ⦌ ( ℩ 𝑓 ∈ ( 𝑤 RingHom ( 𝑆 ↑s ( 𝑏 ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
| 59 | 31 58 | mpteq12dv | ⊢ ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) → ( 𝑟 ∈ ( SubRing ‘ 𝑠 ) ↦ ⦋ ( Base ‘ 𝑠 ) / 𝑏 ⦌ ⦋ ( 𝑖 mPoly ( 𝑠 ↾s 𝑟 ) ) / 𝑤 ⦌ ( ℩ 𝑓 ∈ ( 𝑤 RingHom ( 𝑠 ↑s ( 𝑏 ↑m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) = ( 𝑟 ∈ ( SubRing ‘ 𝑆 ) ↦ ⦋ ( Base ‘ 𝑆 ) / 𝑏 ⦌ ⦋ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) / 𝑤 ⦌ ( ℩ 𝑓 ∈ ( 𝑤 RingHom ( 𝑆 ↑s ( 𝑏 ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) ) |
| 60 | 29 59 | eqtrid | ⊢ ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑆 ) → ⦋ ( Base ‘ 𝑠 ) / 𝑏 ⦌ ( 𝑟 ∈ ( SubRing ‘ 𝑠 ) ↦ ⦋ ( 𝑖 mPoly ( 𝑠 ↾s 𝑟 ) ) / 𝑤 ⦌ ( ℩ 𝑓 ∈ ( 𝑤 RingHom ( 𝑠 ↑s ( 𝑏 ↑m 𝑖 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝑖 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝑖 mVar ( 𝑠 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝑖 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝑖 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) = ( 𝑟 ∈ ( SubRing ‘ 𝑆 ) ↦ ⦋ ( Base ‘ 𝑆 ) / 𝑏 ⦌ ⦋ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) / 𝑤 ⦌ ( ℩ 𝑓 ∈ ( 𝑤 RingHom ( 𝑆 ↑s ( 𝑏 ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) ) |
| 61 | fvex | ⊢ ( SubRing ‘ 𝑆 ) ∈ V | |
| 62 | 61 | mptex | ⊢ ( 𝑟 ∈ ( SubRing ‘ 𝑆 ) ↦ ⦋ ( Base ‘ 𝑆 ) / 𝑏 ⦌ ⦋ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) / 𝑤 ⦌ ( ℩ 𝑓 ∈ ( 𝑤 RingHom ( 𝑆 ↑s ( 𝑏 ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) ∈ V |
| 63 | 60 16 62 | ovmpoa | ⊢ ( ( 𝐼 ∈ V ∧ 𝑆 ∈ CRing ) → ( 𝐼 evalSub 𝑆 ) = ( 𝑟 ∈ ( SubRing ‘ 𝑆 ) ↦ ⦋ ( Base ‘ 𝑆 ) / 𝑏 ⦌ ⦋ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) / 𝑤 ⦌ ( ℩ 𝑓 ∈ ( 𝑤 RingHom ( 𝑆 ↑s ( 𝑏 ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) ) |
| 64 | 63 | dmeqd | ⊢ ( ( 𝐼 ∈ V ∧ 𝑆 ∈ CRing ) → dom ( 𝐼 evalSub 𝑆 ) = dom ( 𝑟 ∈ ( SubRing ‘ 𝑆 ) ↦ ⦋ ( Base ‘ 𝑆 ) / 𝑏 ⦌ ⦋ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) / 𝑤 ⦌ ( ℩ 𝑓 ∈ ( 𝑤 RingHom ( 𝑆 ↑s ( 𝑏 ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) ) |
| 65 | eqid | ⊢ ( 𝑟 ∈ ( SubRing ‘ 𝑆 ) ↦ ⦋ ( Base ‘ 𝑆 ) / 𝑏 ⦌ ⦋ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) / 𝑤 ⦌ ( ℩ 𝑓 ∈ ( 𝑤 RingHom ( 𝑆 ↑s ( 𝑏 ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) = ( 𝑟 ∈ ( SubRing ‘ 𝑆 ) ↦ ⦋ ( Base ‘ 𝑆 ) / 𝑏 ⦌ ⦋ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) / 𝑤 ⦌ ( ℩ 𝑓 ∈ ( 𝑤 RingHom ( 𝑆 ↑s ( 𝑏 ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) | |
| 66 | 65 | dmmptss | ⊢ dom ( 𝑟 ∈ ( SubRing ‘ 𝑆 ) ↦ ⦋ ( Base ‘ 𝑆 ) / 𝑏 ⦌ ⦋ ( 𝐼 mPoly ( 𝑆 ↾s 𝑟 ) ) / 𝑤 ⦌ ( ℩ 𝑓 ∈ ( 𝑤 RingHom ( 𝑆 ↑s ( 𝑏 ↑m 𝐼 ) ) ) ( ( 𝑓 ∘ ( algSc ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑟 ↦ ( ( 𝑏 ↑m 𝐼 ) × { 𝑥 } ) ) ∧ ( 𝑓 ∘ ( 𝐼 mVar ( 𝑆 ↾s 𝑟 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑔 ∈ ( 𝑏 ↑m 𝐼 ) ↦ ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) ⊆ ( SubRing ‘ 𝑆 ) |
| 67 | 64 66 | eqsstrdi | ⊢ ( ( 𝐼 ∈ V ∧ 𝑆 ∈ CRing ) → dom ( 𝐼 evalSub 𝑆 ) ⊆ ( SubRing ‘ 𝑆 ) ) |
| 68 | 67 | ssneld | ⊢ ( ( 𝐼 ∈ V ∧ 𝑆 ∈ CRing ) → ( ¬ 𝑅 ∈ ( SubRing ‘ 𝑆 ) → ¬ 𝑅 ∈ dom ( 𝐼 evalSub 𝑆 ) ) ) |
| 69 | ndmfv | ⊢ ( ¬ 𝑅 ∈ dom ( 𝐼 evalSub 𝑆 ) → ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) = ∅ ) | |
| 70 | 68 69 | syl6 | ⊢ ( ( 𝐼 ∈ V ∧ 𝑆 ∈ CRing ) → ( ¬ 𝑅 ∈ ( SubRing ‘ 𝑆 ) → ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) = ∅ ) ) |
| 71 | 70 | necon1ad | ⊢ ( ( 𝐼 ∈ V ∧ 𝑆 ∈ CRing ) → ( ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) ≠ ∅ → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) ) |
| 72 | 71 | com12 | ⊢ ( ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) ≠ ∅ → ( ( 𝐼 ∈ V ∧ 𝑆 ∈ CRing ) → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) ) |
| 73 | 22 72 | jcai | ⊢ ( ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) ≠ ∅ → ( ( 𝐼 ∈ V ∧ 𝑆 ∈ CRing ) ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) ) |
| 74 | df-3an | ⊢ ( ( 𝐼 ∈ V ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) ↔ ( ( 𝐼 ∈ V ∧ 𝑆 ∈ CRing ) ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) ) | |
| 75 | 73 74 | sylibr | ⊢ ( ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) ≠ ∅ → ( 𝐼 ∈ V ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) ) |
| 76 | 3 7 75 | 3syl | ⊢ ( 𝑋 ∈ 𝑄 → ( 𝐼 ∈ V ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) ) |