This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Modular reduction produces a half-open interval. (Contributed by Stefan O'Rear, 12-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | modelico | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 mod 𝐵 ) ∈ ( 0 [,) 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 mod 𝐵 ) ∈ ℝ ) | |
| 2 | modge0 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → 0 ≤ ( 𝐴 mod 𝐵 ) ) | |
| 3 | modlt | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 mod 𝐵 ) < 𝐵 ) | |
| 4 | 0re | ⊢ 0 ∈ ℝ | |
| 5 | rpxr | ⊢ ( 𝐵 ∈ ℝ+ → 𝐵 ∈ ℝ* ) | |
| 6 | 5 | adantl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → 𝐵 ∈ ℝ* ) |
| 7 | elico2 | ⊢ ( ( 0 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 mod 𝐵 ) ∈ ( 0 [,) 𝐵 ) ↔ ( ( 𝐴 mod 𝐵 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 mod 𝐵 ) ∧ ( 𝐴 mod 𝐵 ) < 𝐵 ) ) ) | |
| 8 | 4 6 7 | sylancr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐴 mod 𝐵 ) ∈ ( 0 [,) 𝐵 ) ↔ ( ( 𝐴 mod 𝐵 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 mod 𝐵 ) ∧ ( 𝐴 mod 𝐵 ) < 𝐵 ) ) ) |
| 9 | 1 2 3 8 | mpbir3and | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 mod 𝐵 ) ∈ ( 0 [,) 𝐵 ) ) |